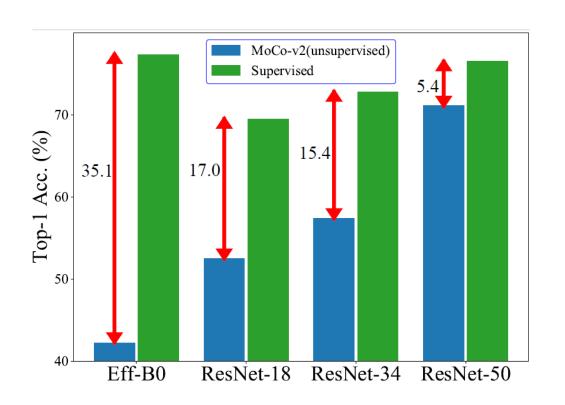


Bag of Instances Aggregation Boosts Self-supervised Distillation

Haohang Xu^{1,2*}, Jiemin Fang^{3,4*}, Xiaopeng Zhang², Lingxi Xie², Xinggang Wang⁴, Wenrui Dai¹, Hongkai Xiong¹, Qi Tian²

¹Shanghai Jiao Tong University

²Huawei Inc

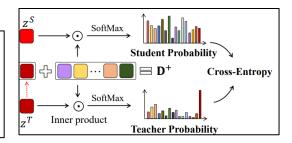

³Institute of Artificial Intelligence, Huazhong University of Science & Technology

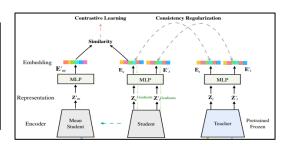
⁴School of EIC, Huazhong University of Science & Technology

Code: https://github.com/haohang96/bingo

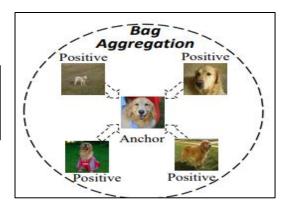
Knowledge Distillation in Self-supervised Learning

The performance gap between supervised and self-supervised learning (MoCo-v2 as testbed) increases with model's parameters decrease, which is harmful to the deployment on some edge or low computational capacity devices.

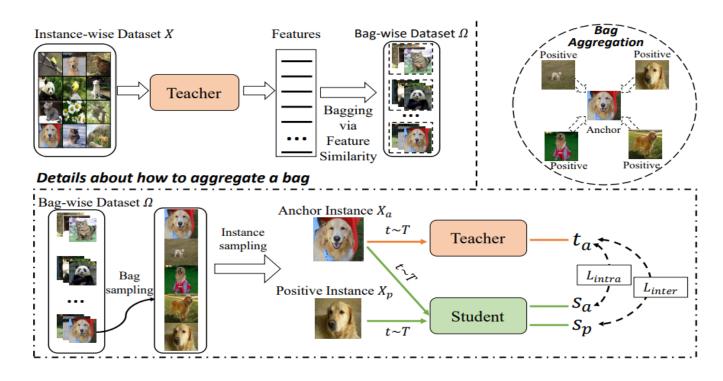



Knowledge Distillation in Self-supervised Learning

Distillation via **statistics** between the student and teacher


Distributions between randomly selected instances: SEED, Compress

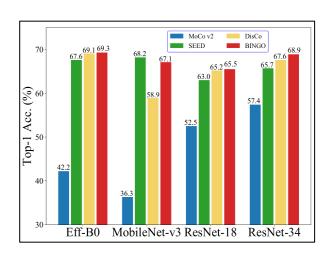
Embedding distances of one instance's different views: DisCo, Simreg



Data relation between similar instances: BINGO (ours)

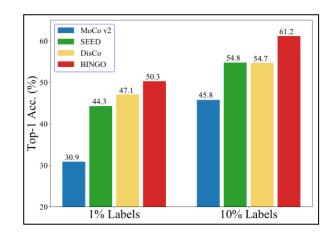
Knowledge Distillation in Self-supervised Learning

Inter-sample relation Distillation



- 1. Summarize data relation via the teacher network and bag similar samples together
- 2. Aggregate bags in the bag-wise dataset using L_{inter}

Experiments on ImageNet


Linear classification

Method	S	R-	18	R-	-34
Method	T_	T-1	T-5	T-1	T-5
Supervised (Fang e	al., 2020)	69.5	-	72.8	-
MoCo-V2 (Baseline) (Fa	ng et al., 2020)	52.5	77.0	57.4	81.6
SEED (Fang et al., 2020)	R-50 (67.4)	57.6	81.8	58.5	82.6
DisCo (Gao et al., 2021)	R-50 (67.4)	60.6	83.7	62.5	85.4
BINGO	R-50 (67.4)	61.4	84.3	63.5	85.7
BINGO	R-50 (71.1)	64.0	85.7	66.1	87.2
SEED (Fang et al., 2020)	R-152 (74.1)	59.5	83.3	62.7	85.8
DisCo (Gao et al., 2021)	R-152 (74.1)	65.5	86.7	68.1	88.6
BINGO	R-152 (74.1)	65.9	87.1	69.1	88.9
SEED (Fang et al., 2020)	R50×2 (77.3)	63.0	84.9	65.7	86.8
DisCo (Gao et al., 2021)	R50×2 (77.3)	65.2	86.8	67.6	88.6
BINGO	R50×2 (77.3)	65.5	87.0	68.9	89.0

Semi-supervised Learning

-	30.9	45.8
R-50 (67.4)	41.2	47.6
R-50 (67.4)	39.1	50.2
R-50 (67.4)	39.2	50.1
R-50 (67.4)	42.8	57. 5
R-152 (74.1)	-	-
R-152 (74.1)	44.3	54.8
R-152 (74.1)	47.1	54.7
R-152 (74.1)	50.3	61.2
R-50×2 (77.3)	48.2	60.2
	R-50 (67.4) R-50 (67.4) R-50 (67.4) R-152 (74.1) R-152 (74.1) R-152 (74.1) R-152 (74.1)	R-50 (67.4) 39.1 R-50 (67.4) 39.2 R-50 (67.4) 42.8 R-152 (74.1) - R-152 (74.1) 44.3 R-152 (74.1) 47.1 R-152 (74.1) 50.3

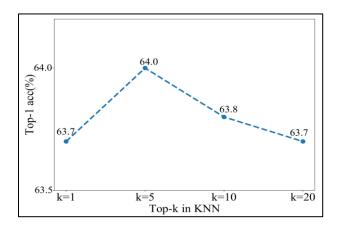
Experiments on downstream tasks

CIFAR-10/100 classification

Method	T	CIFAR-10/100
MoCo v2 baseline	-	77.9/48.1
SEED	R-50 (67.4)	82.3/56.8
DisCo	R-50 (67.4)	85.3/63.3
BINGO	R-50 (67.4)	86.8/66.5

COCO object detection and instance segmentation

				Mas	k R-CN	N, Re	sNet-18	R, Detec	tion						Masl	R-CN	IN, Res	sNet-1	8, Instar	nce Segr	nentatio	n		
Method			$1 \times \text{sch}$	nedule					$2 \times \text{sch}$	nedule					$1 \times \text{sche}$	dule					$2 \times$ sche	edule		
	AP^{bb}	AP^{bb}_{50}	AP^{bb}_{75}	AP_S	AP_M	AP_L	AP^{bb}	AP^{bb}_{50}	AP^{bb}_{75}	AP_S	AP_M	AP_L	AP^{mk}	AP^{mk}_{50}	AP^{mk}_{75}	AP_S	AP_M	AP_L	AP^{mk}	AP^{mk}_{50}	AP^{mk}_{75}	AP_S	AP_M	$\overline{\mathrm{AP}_L}$
MoCo v2	31.3	50.0	33.5	16.5	33.1	41.1	34.4	53.9	37.0	18.9	36.8	45.5	28.8	47.2	30.6	12.2	29.7	42.7	31.5	51.1	33.6	14.1	32.9	46.9
BINGO	32.0	51.0	34.7	17.1	34.1	42.0	34.9	54.2	37.7	20.0	37.1	46.0	29.6	48.2	31.5	12.8	30.8	43.0	31.9	51.7	33.9	14.9	33.1	47.2


					Masl	R-CN	NN, Res	Net-34				
Method		Object Detection				Instance Discrimination						
	AP^{bb}	AP_{50}^{bb}	AP^{bb}_{75}	AP_S	AP_M	AP_L	AP^{mk}	AP^{mk}_{50}	AP^{mk}_{75}	AP_S	AP_M	$\overline{AP_L}$
MoCo v2	38.1	56.8	40.7	-	-	-	33.0	53.2	35.3	-	-	-
SEED Fang et al. (2020)	38.4	57.0	41.0	-	-	-	33.3	53.7	35.3	-	-	-
DisCo Gao et al. (2021)	39.4	58.7	42.7	-	-	-	34.4	55.4	36.7	-	-	-
BINGO	39.9	59.4	43.5	22.8	43.3	52.1	35.7	56.5	38.2	16.8	37.9	51.6

Effects of bagging strategy

Effects of teacher parameters and relation

Teacher Parameters	Student Relation	Teacher Relation	Accuracy
X	Х	×	52.2 (w/o distillation)
X	√	Х	57.2
X	X	✓	62.2
\checkmark	Х	Х	62.0
\checkmark	\checkmark	×	62.5
✓	×	✓	64.0

Effect of K in K-nearest neighbors

Using K-means as bagging strategy

Number of Clusters (C)	Accuracy
5000	62.7
10000	63.5
20000	63.8
50000	63.6