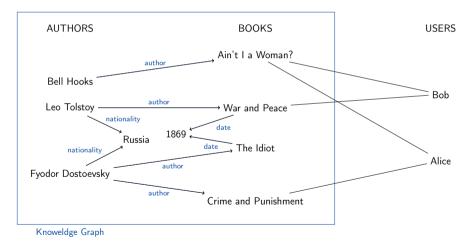
Explainable GNN-Based Models over Knowledge Graphs

David J. Tena Cucala¹
Bernardo Cuenca Grau¹
Egor V. Kostylev²
Boris Motik¹

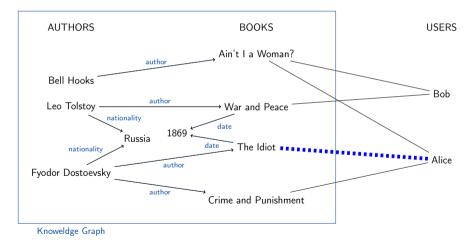
1.University of Oxford, 2.University of Oslo

Motivation

Many applications of KGs involve *learning a function* from KGs to KGs.



Many applications in KGs involve *learning a function* from KGs to KGs.



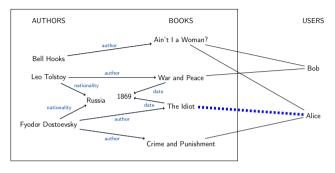
Motivation

• The function is unknown, but examples are available.

• Learning must be *noise-tolerant*.

• Functions can be realised using a ML model.

- However, such models are often difficult to interpret.
- Symbolic rules can provide explanations for model predictions.



For example, the suggestion $Recommend(Alice, The_Idiot)$ can be explained by rule:

$$Author(x, y_1) \land Author(x, y_2) \land Likes(z, y_1) \rightarrow Recommend(z, y_2),$$

and KG facts

$$Author({\sf Dostoevsky}, {\sf Crime_And_Punishment}) \\ Author({\sf Dostoevsky}, {\sf The_Idiot}) \\ Likes({\sf Alice}, {\sf Crime_And_Punishment}).$$

Our Contribution

A family of GNN-based transformations of KGs which:

- can be effectively trained in practice as usual, but
- all its predictions can be explained symbolically in terms of Datalog rules.

A Monotonic GNN-Based Transformation of KGs

Our approach is implemented in three steps:

- encode the KG to a coloured graph G
- 2 apply the GNN model to G
- decode the GNN model output to a new KG

The *encoder* introduces a vertex for each entity or pair of linked entities in the KG, an encodes KG triples encoded as feature vector components.

The **GNN model** is based on **Monotonic Graph Neural Networks** (MGNNs):

- Aggregate information from neighbour nodes via maximum.
- Model weights (but not the bias) must be non-negative.
- Activation and classification functions must be monotonically increasing.

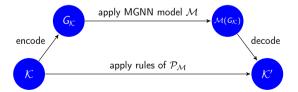
The *decoder* reverses the transformation by the encoder.

Key Results

Our transformation of KGs is *monotonic under homomorphisms*.

No predictions (up to constant renaming) are lost by extending the input or renaming constants in it. This is a key property of Datalog reasoning.

For each MGNNs \mathcal{M} , there exists a Datalog program $\mathcal{P}_{\mathcal{M}}$ such that on any knowledge graph, the predictions of \mathcal{M} on the graph coincide with the inferences of $\mathcal{P}_{\mathcal{M}}$ on it.



We provide a correct and terminating *algorithm* for extracting $\mathcal{P}_{\mathcal{M}}$ from a given \mathcal{M} .

Evaluation

Can MGNN-based transformations be effectively trained and used in practice?

- Evaluation on Knowledge Graph completion (inductive setting)
- MGNNs were on par with state of the art approaches like DRUM and AnyBURL
- ullet We extracted explicitly non-redundant rules of $\mathcal{P}_{\mathcal{M}}$ with at most two body atoms.
- Such rules accounted for almost all model predictions on the benchmarks.

Conclusion

MGNNs can be effectively trained in practice and perform as state-of-the-art models, while providing the added benefit of *full translatability* to Datalog rules.

Contact: david.tena.cucala@cs.ox.ac.uk