
Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations

Youwei Liang¹, Chongjian Ge², Zhan Tong³, Yibing Song³, Jue Wang³, Pengtao Xie¹

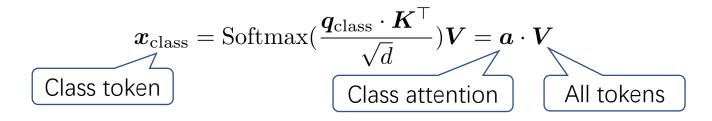
¹UC San Diego ²The University of Hong Kong ³Tencent Al Lab

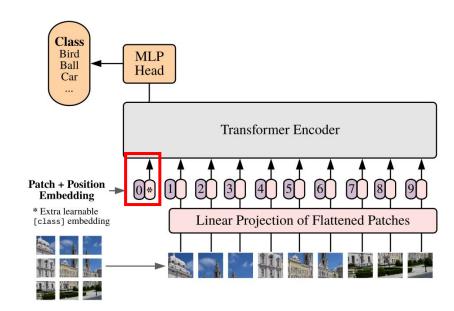
Vision Transformers (ViTs)

- Divide an image into patches, with each patch as a token
- Construct attention computation among tokens
- Is it possible to use a subset of the tokens to make ViTs more efficient?

Motivations

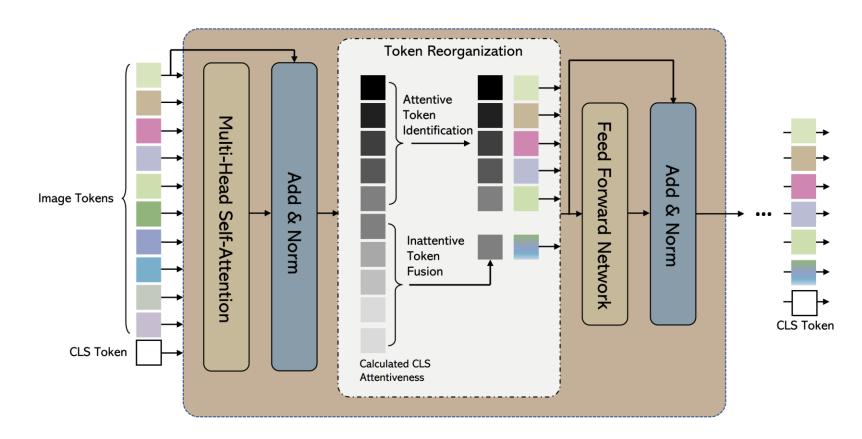
- Randomly remove tokens in a trained DeiT-S (Touvron et al., 2021a)
- In (a), removing image tokens unrelated to the visual content of the corresponding category does not deteriorate ViT predictions. In (b), removing related image tokens makes ViT predict incorrectly.


(a) Mask on backgrounds


(b) Mask on objects

Attentive Token Identification

- Class token is used for classification
- Class token is a linear combination of representations of all tokens
- Class attention score determines the weight of the combination
- Important (Attentive) tokens get higher weight



- Use the class attention score as a selection criterion
- Keep the tokens with top class attention scores

Token reorganization

- Between the MHSA and FFN
- Class attention scores: averaged over all MHSA heads
- Keep the tokens with top class attention scores
- Hyper-parameter: token keep rate
- An extra point: fuse the inattentive tokens

Experiments

- Incorporating token reorganization to a **trained** DeiT-S
- Classification accuracy drops
- We propose to incorporate image token reorganization during the **ViT training** process

Token keep rate	1.0	0.9	0.8	0.7	0.6	0.5
Top-1 Acc (%)	79.8	79.7(-0.1)	79.2(-0.6)	78.5(-1.3)	76.8(-3.0)	73.8(-6.0)

ImageNet classification accuracy (without training)

Experiments

- Apply token reorganization to two ViT variants: DeiT and LV-ViT
- Train for 300 epochs on ImageNet (same setting as the vanilla models)
- Results: large speedup, small accuracy drop

Keep rate	Top-1 Acc (%)	Top-5 Acc (%)	Throughput (images/s)	MACs	Top-1 Acc (%)	Top-5 Acc (%)	Throughput (images/s)	MACs	
DeiT-S	79.8	79.8 94.9		4.6	79.8	94.9	2923	4.6	
	EViT without inattentive token fusion				EViT with inattentive token fusion				
0.9	79.9±0.1 (+0.1)	94.9±0.0 (-0.0)	3201 (+10%)	4.0 (-13%)	79.8±0.1 (-0.0)	95.0±0.0 (+0.1)	3197 (+9%)	4.0 (-13%)	
0.8	$79.7 \pm 0.0 (-0.1)$	94.8 ± 0.0 (-0.1)	3772 (+27%)	3.5 (-24%)	$79.8 \pm 0.0 (-0.0)$	94.9 ± 0.0 (-0.0)	3619 (+24%)	3.5 (-24%)	
0.7	$79.4 \pm 0.1 (-0.4)$	$94.7 \pm 0.1 (-0.2)$	4249 (+45%)	3.0 (-35%)	$79.5 \pm 0.0 (-0.3)$	$94.8 \pm 0.0 (-0.1)$	4385 (+50%)	3.0 (-35%)	
0.6	$79.1 \pm 0.2 (-0.7)$	94.5 ± 0.1 (-0.4)	4967 (+70%)	2.6 (-43%)	$78.9 \pm 0.1 (-0.9)$	94.5 ± 0.0 (-0.4)	4722 (+62%)	2.6 (-43%)	
0.5	$78.4 \pm 0.2 \text{(-1.4)}$	94.1±0.0 (-0.8)	5325 (+82%)	2.3 (-50%)	$78.5 \pm 0.0 (-1.3)$	94.2±0.0 (-0.7)	5408 (+85%)	2.3 (-50%)	

Keep rate	Top-1 Acc (%)	Top-5 Acc (%)	Throughput (images/s)	MACs (G)	
LV-ViT-S	83.3	-	2112	6.6	
0.7 0.5	83.0 (-0.3) 82.5 (-0.8)	96.3 96.2	2954 (+40%) 3603 (+71%)	4.7 (-29%) 3.9 (-41%)	

Using higher-resolution images

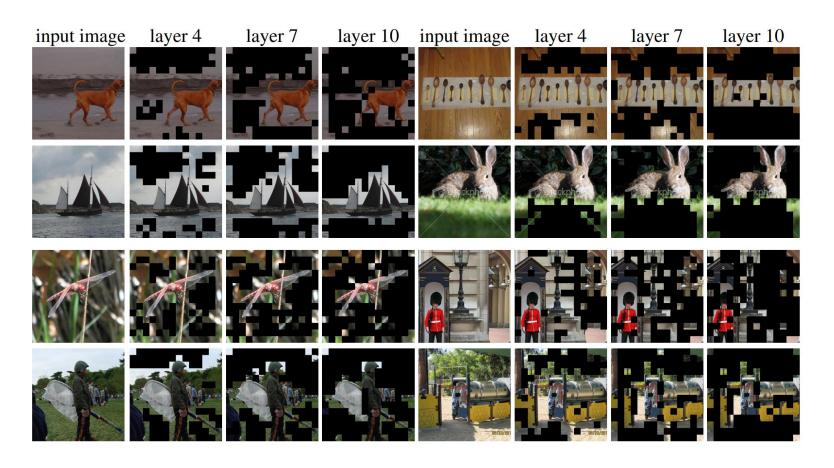
- More images tokens
- Higher accuracy, with same throughput as a vanilla model with smaller-size images

(a) DeiT-S

Model	Keep rate	Image size	Top-1 (%)	Top-5 (%)	img/s	MACs (G)
DeiT-S	1.0	224	79.8	94.9	2923	4.6
EViT EViT EViT EViT EViT	0.5 0.5 0.5 0.6 0.6 0.7	256 288 304 256 288 272	79.3 80.1 81.0 80.0 81.0 80.3	94.7 95.0 95.6 95.0 95.4 95.3	3788 3138 2905 3524 2927 2870	3.1 3.9 4.4 3.5 4.5 4.6

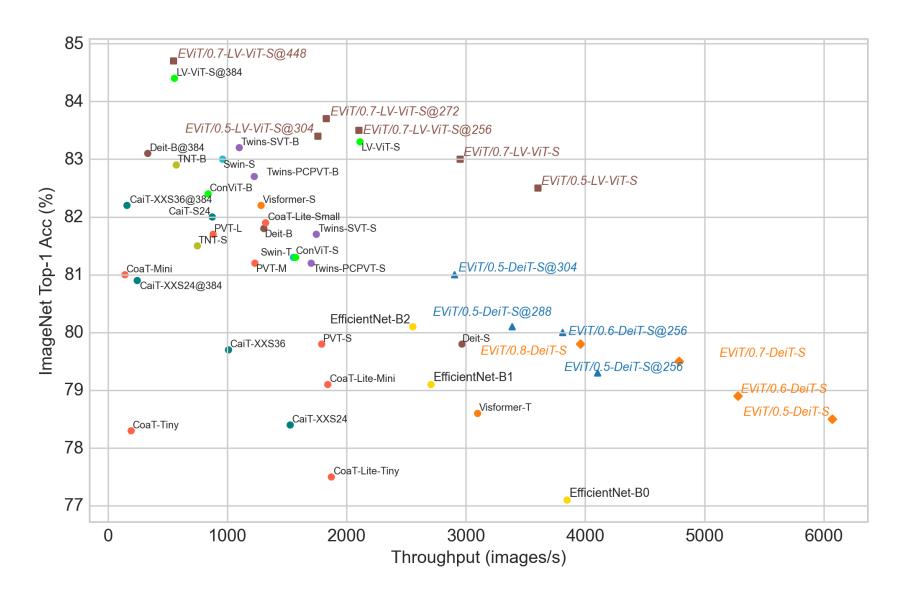
(b) LV-ViT-S

Model	Keep rate	Image size	Top-1 (%)	Top-5 (%)	img/s	MACs (G)
LV-ViT-S	1.0	$\begin{array}{c} 224 \\ 224 \uparrow 384 \end{array}$	83.3	_	2112	6.6
LV-ViT-S	1.0		84.4	_	557	21.9
EViT	0.9	$ 240 256 256 272 304 272 \uparrow 448 $	83.6	96.5	1956	6.8
EViT	0.8		83.6	96.6	1901	6.9
EViT	0.7		83.5	96.5	2102	6.2
EViT	0.7		83.7	96.6	1829	7.1
EViT	0.5		83.4	96.5	1758	7.4
EViT	0.7		84.7	97.1	548	21.5


Comparison with DynamicViT

• EViT: requires lower training budget, obtains higher accuracy

Model	Pre-trained	Epochs	Keep rate	Top-1 (%)	#Params (M)	Throughput (img/s)	MACs (G)
DynamicViT-DeiT-S	\checkmark	30	0.5	77.5	22.8	5579	2.2
EViT-DeiT-S	\checkmark	30	0.5	78.5 (+1.0)	22.1 (-0.7)	5549	2.3
EViT-DeiT-S	\checkmark	100	0.5	79.1 (+1.6)	22.1 (-0.7)	5549	2.3
DynamicViT-DeiT-S	√	30	0.7	79.3	22.8	4439	3.0
EViT-DeiT-S	\checkmark	30	0.7	79.5 (+0.2)	22.1 (-0.7)	4478	3.0
EViT-DeiT-S	\checkmark	100	0.7	79.8 (+0.5)	22.1 (-0.7)	4478	3.0
DynamicViT-DeiT-S	×	300	0.5	73.1	22.8	5579	2.2
EViT-DeiT-S	×	300	0.5	78.5 (+5.4)	22.1 (-0.7)	5549	2.3
DynamicViT-DeiT-S	×	300	0.7	77.6	22.8	4439	3.0
EViT-DeiT-S	×	300	0.7	79.5 (+1.9)	22.1 (-0.7)	4478	3.0


Visualization of the removed tokens

• Removed tokens are mostly on backgrounds or information-sparse area

Comparison with other ViTs

• EViT achieves a competitive trade-off between accuracy and throughput

Thank you!

• Paper: https://arxiv.org/abs/2202.07800

• Code: https://github.com/youweiliang/evit

Paper

Code