Online Hyperparameter Meta-Learning with Hypergradient Distillation

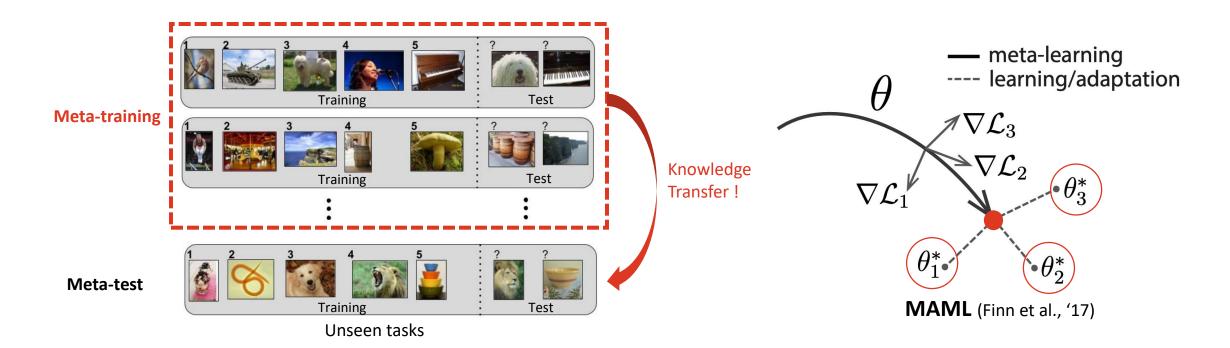
Hae Beom Lee¹, Hayeon Lee¹, Jaewoong Shin³, Eunho Yang^{1,2}, Timothy Hospedales^{4,5}, Sung Ju Hwang^{1,2}

KAIST¹, AITRICS², Lunit³, University of Edinburgh⁴, Samsung AI Centre Cambridge⁵

ICLR 2022 spotlight

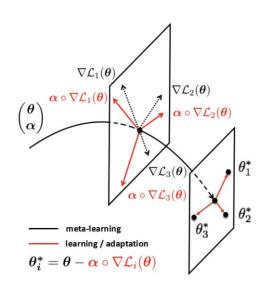
Meta-Learning

- Humans generalize well because we never learn from scratch.
- Learn a model that can generalize over a distribution of tasks.

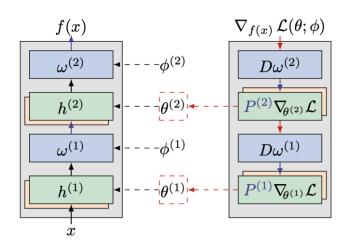


Hyperparameters in Meta-Learning

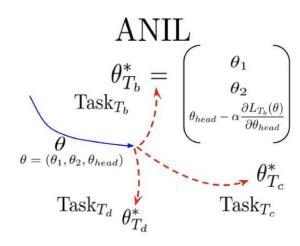
- The parameters that do not participate in inner-optimization \rightarrow Hyperparameters in meta-learning.
- They are usually high-dimensional.



Element-wise learning rates



Interleaved (e.g. "Warp") layers



Whole feature extractor

- Z. Li, F. Zhou, F. Chen, H. Li, Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, 2017
- S. Flennerhag, A. A. Rusu, R. Pascanu, F. Visin, H. Yin, R. Hadsell, Meta-Learning with Warped Gradient Descent, ICLR 2020
- A. Raghu*, M. Raghu*, S. Bengio, O. Vinyals, Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML, ICLR 2020

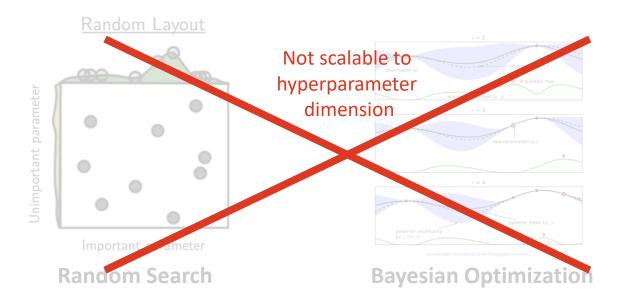
Hyperparameter Optimization (HO)

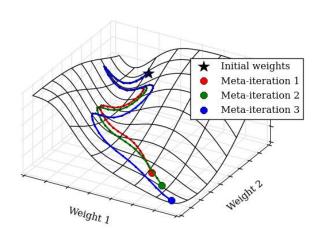
Hyperparameter optimization (HO): a problem of choosing a set of optimal hyperparameters for

a learning algorithm.

Which method should we use for such high-dimensional hyperparams?

 $P \xrightarrow{\nabla \mathcal{L}_{1}(\theta)} \bigvee_{\substack{\nabla \mathcal{L}_{2}(\theta) \\ \alpha \circ \nabla \mathcal{L}_{2}(\theta) \\ \theta \circ$





Gradient-based HO

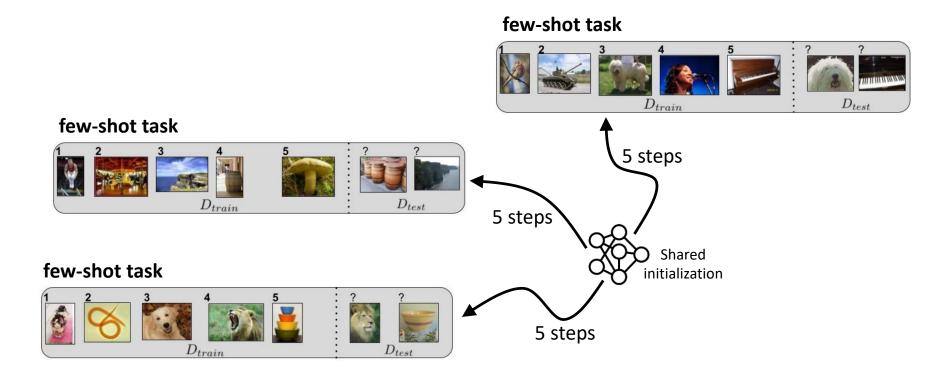
D. Maclaurin, D. Duvenaud, R. P. Adams, Gradient-based Hyperparameter Optimization through Reversible Learning, ICML 2015

J. Bergstra, Y. Bengio. Random search for hyper-parameter optimization, 2012

https://towardsdatascience.com/shallow-understanding-on-bayesian-optimization-324b6c1f7083

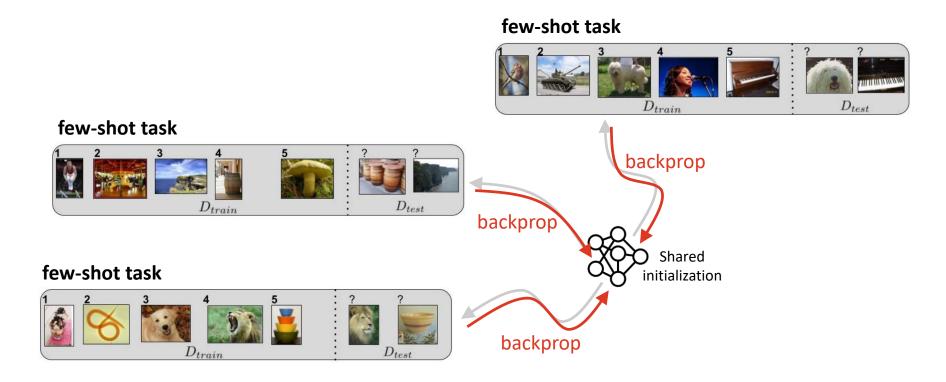
In Case of Few-shot Learning

- In case of few-shot learning, computing the exact gradient w.r.t. the hyperparameter (i.e. hypergradient) is not too expensive.
- A few-gradient steps are sufficient for each task.

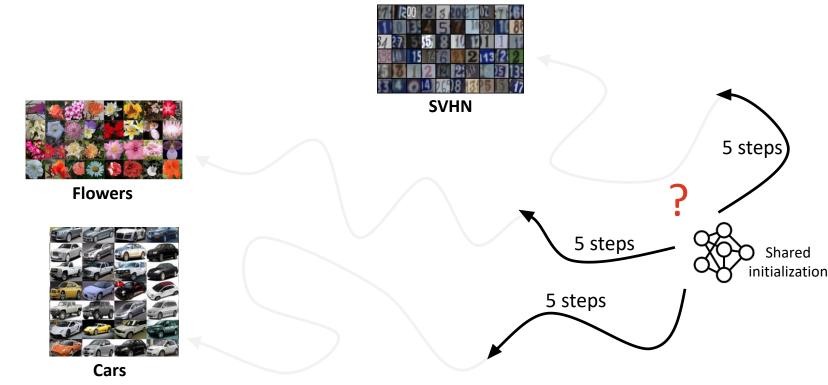


In Case of Few-shot Learning

- In case of few-shot learning, computing the exact gradient w.r.t. the hyperparameter (i.e. hypergradient) is not too expensive.
- A few-gradient steps are sufficient for each task.

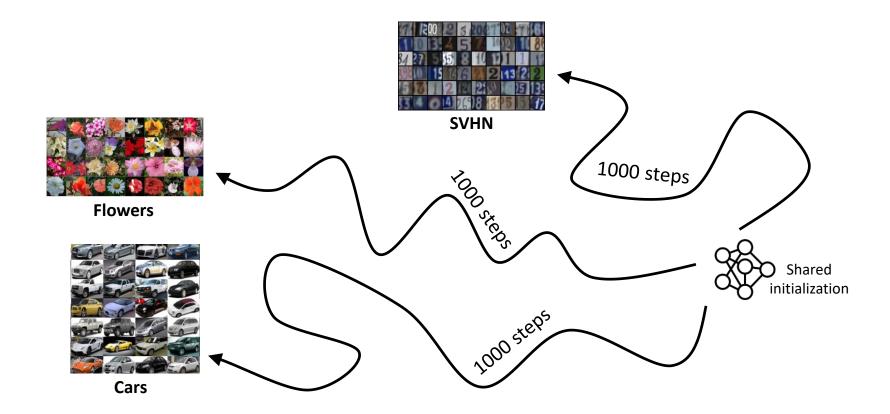


- Many-shot learning → Only a few gradient steps?
 - → Meta-learner may suffer from the short-horizon bias (Wu et al. '18).

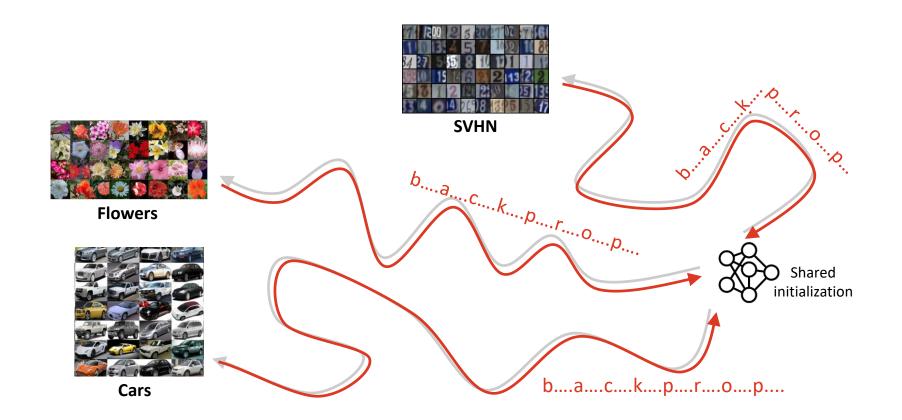


Y. Wu*, M. Ren*, R. Liao, R. Grosse, Understanding Short-Horizon Bias in Stochastic Meta-Optimization, ICLR 2018 J. Shin*, H. B. Lee*, B. Gong, S. J. Hwang, Large-Scale Meta-Learning with Continual Trajectory Shifting, ICML 2021

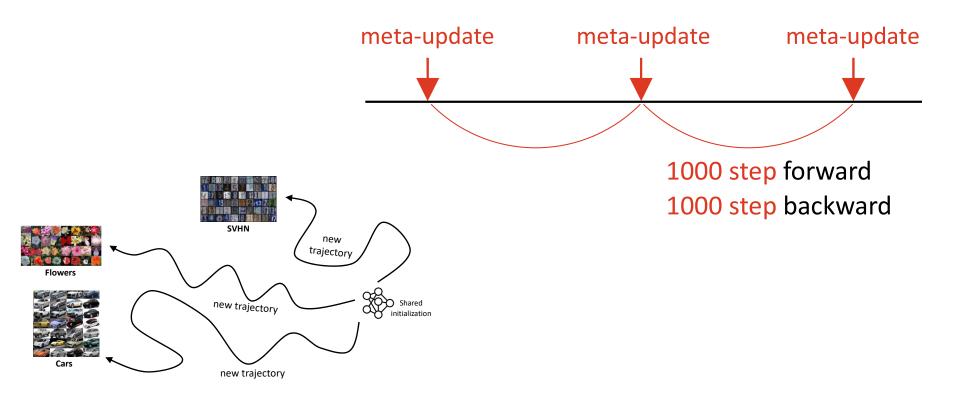
• Many-shot learning → requires longer inner-learning trajectory



- Many-shot learning → requires longer inner-learning trajectory
 - → Computing a single hypergradient becomes too expensive!

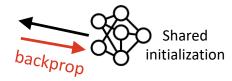


- Many-shot learning → requires longer inner-learning trajectory
 - → Offline method: interval between two adjacent meta-updates is too long...
 - → Meta-convergence is poor.



- Many-shot learning → requires longer inner-learning trajectory
 - → Online method: update hyperparamer every inner-grad step!

Flowers



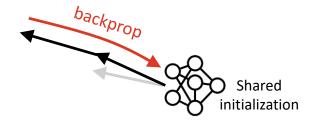
- Many-shot learning → requires longer inner-learning trajectory
 - → Online method: update hyperparamer every inner-grad step!

update

Shared initialization

- Many-shot learning → requires longer inner-learning trajectory
 - → Online method: update hyperparamer every inner-grad step!

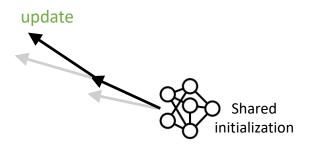
Flowers



• Many-shot learning → requires longer inner-learning trajectory

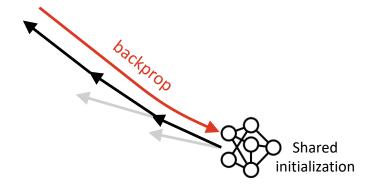
→ Online method: update hyperparamer every inner-grad step!

Flowers



- Many-shot learning → requires longer inner-learning trajectory
 - → Online method: update hyperparamer every inner-grad step!

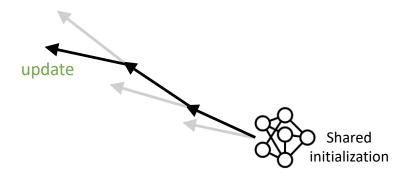
Flowers



Many-shot learning → requires longer inner-learning trajectory

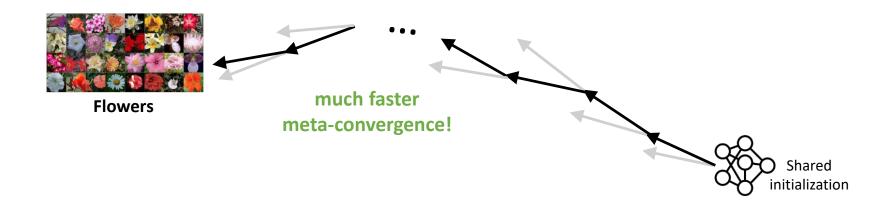
→ Online method: update hyperparamer every inner-grad step!

Flowers

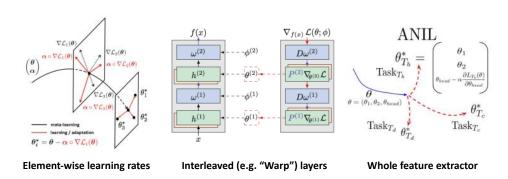


Many-shot learning → requires longer inner-learning trajectory

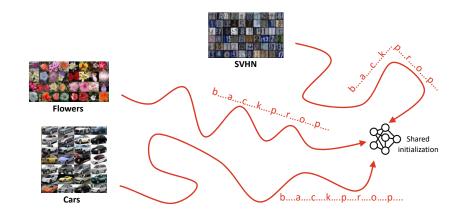
→ Online method: update hyperparamer every inner-grad step!



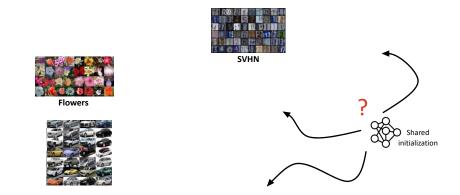
Criteria of Good HO Algorithm for Meta-Learning



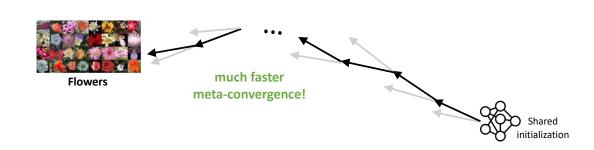
1. Scalable to hyperparameter dimension



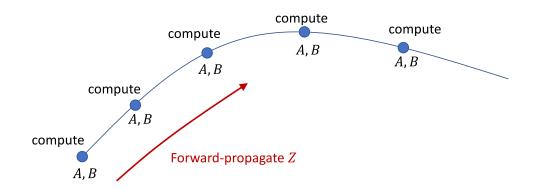
3. Computing a single hypergradient should not be too expensive



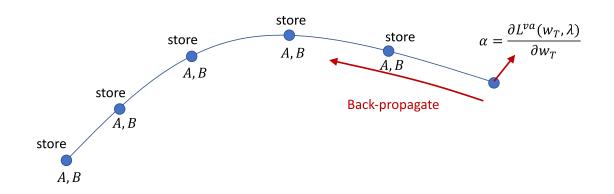
2. Less or no short-horizon bias



4. Update hyperparam every inner-grad step i.e. online optimization



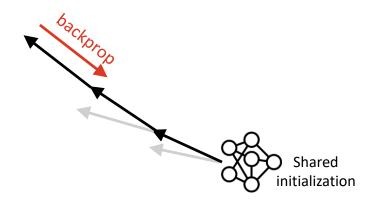
Criteria	FMD
1. Scalable to hyperparam dim	X
2. Less or no short horizon bias	0
3. Constant memory cost	0
4. Online optimization	0



Criteria	FMD	RMD
1. Scalable to hyperparam dim	X	0
2. Less or no short horizon bias	0	0
3. Constant memory cost	0	X
4. Online optimization	0	X

$$\frac{\partial \mathbf{w}^*}{\partial \boldsymbol{\lambda}} \Big|_{\boldsymbol{\lambda}'} = -\left[\frac{\partial^2 \mathcal{L}_{\mathrm{T}}}{\partial \mathbf{w} \partial \mathbf{w}^T} \right]^{-1} \times \underbrace{\frac{\partial^2 \mathcal{L}_{\mathrm{T}}}{\partial \mathbf{w} \partial \boldsymbol{\lambda}^T}}_{\mathbf{k}', \mathbf{w}^*(\boldsymbol{\lambda}')} \left(\text{IFT} \right)$$
training Hessian training mixed partials

Criteria	FMD	RMD	IFT
1. Scalable to hyperparam dim	X	0	0
2. Less or no short horizon bias	0	0	0
3. Constant memory cost	0	X	0
4. Online optimization	0	X	Δ



Criteria	FMD	RMD	IFT	1-step
1. Scalable to hyperparam dim	X	0	0	0
2. Less or no short horizon bias	0	0	0	X
3. Constant memory cost	0	X	0	0
4. Online optimization	0	X	Δ	0

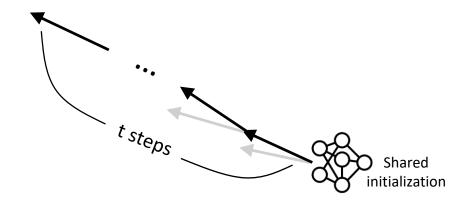
Goal of This Paper

This paper aims to overcome all the aforementioned limitations at the same time.

Hypergradient distillation

$$\pi_t^*, w_t^*, D_t^* = \underset{\pi, w, D}{\operatorname{arg \, min}} \|\pi f_t(w, D) - g_t^{SO}\|_2$$

Criteria	FMD	RMD	IFT	1-step	Ours
1. Scalable to hyperparam dim	X	0	0	0	0
2. Less or no short horizon bias	0	0	0	X	0
3. Constant memory cost	0	X	0	0	0
4. Online optimization	0	X	Δ	0	0



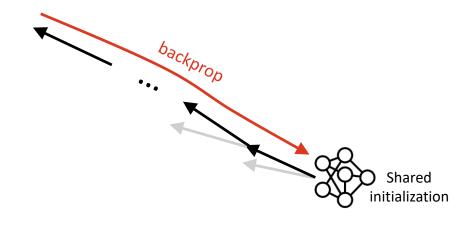
hypergradient

respose Jacobian

$$\frac{d\mathcal{L}^{\text{val}}(w_t, \lambda)}{d\lambda} = \underbrace{\frac{\partial \mathcal{L}^{\text{val}}(w_t, \lambda)}{\partial \lambda}}_{g_t^{\text{FO}}: \text{ First-order term}} + \underbrace{\frac{\partial \mathcal{L}^{\text{val}}(w_t, \lambda)}{\partial w_t}}_{g_t^{\text{SO}}: \text{ Second-order term}} \underbrace{\frac{dw_t}{d\lambda}}_{d\lambda} = \sum_{i=1}^t \left(\prod_{j=i+1}^t A_j\right) B_i$$

$$\frac{dw_t}{d\lambda} = \sum_{i=1}^t \left(\prod_{j=i+1}^t A_j\right) B_i$$

requires 2t – 1 JVP computations (e.g. RMD)



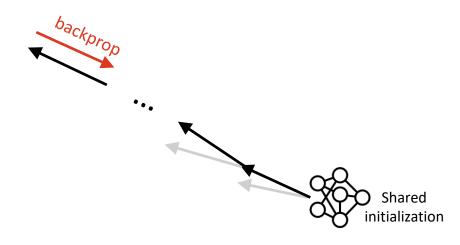
hypergradient

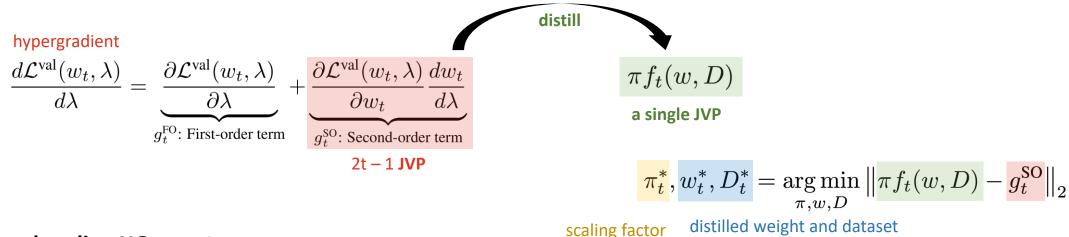
respose Jacobian

$$\frac{d\mathcal{L}^{\text{val}}(w_t, \lambda)}{d\lambda} = \underbrace{\frac{\partial \mathcal{L}^{\text{val}}(w_t, \lambda)}{\partial \lambda}}_{g_t^{\text{FO}}: \text{ First-order term}} + \underbrace{\frac{\partial \mathcal{L}^{\text{val}}(w_t, \lambda)}{\partial w_t}}_{g_t^{\text{SO}}: \text{ Second-order term}} \underbrace{\frac{\partial \mathcal{L}^{\text{val}}(w_t, \lambda)}{\partial w_t}}_{g_t^{\text{SO}}: \text{ Second-order term}}$$

$$\frac{dw_t}{d\lambda} \approx \frac{\partial w_t}{\partial \lambda} \Big|_{w_{t-1}} = B_t$$

Requires only 1 JVP computation
But it suffers from short horizon bias

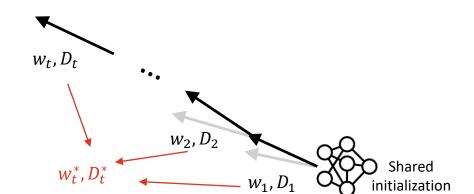




For each online HO step t,

- it does not require computing the actual g_t^{SO} .
- we only need to keep updating a moving average of w_t^* and D_t^* .
- the scaling factor π^* is also efficiently estimated with a function approximator.
- we can approximately solve the distillation problem efficiently.

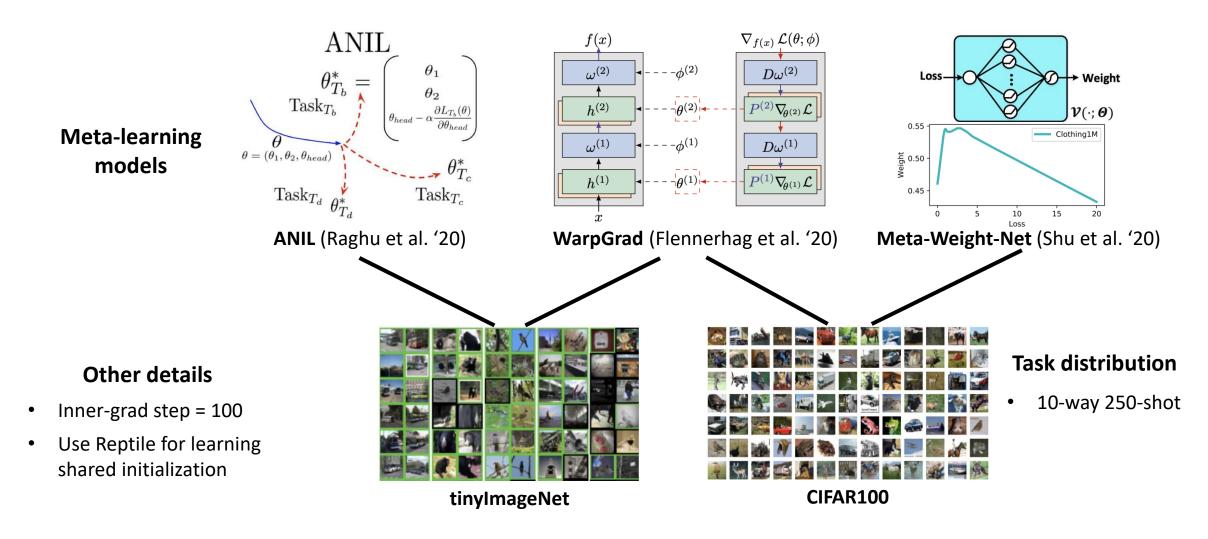
Please read the main paper for the technical details!



→ hypergrad size

→ hypergrad direction

Experimental Setup



Experimental Results

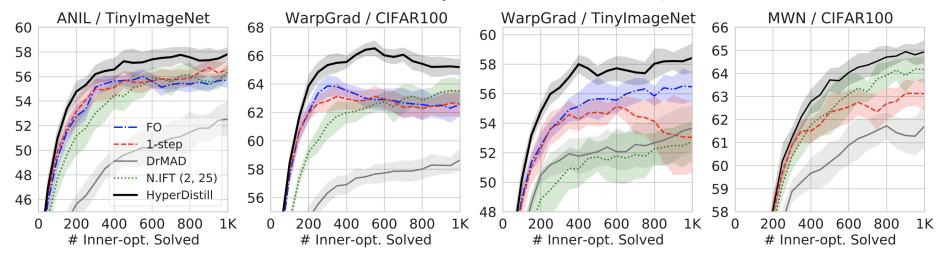
Q1. Does HyperDistill provide faster convergence?

Meta-training convergence (Test Loss) MetaWeightNet / CIFAR100 ANIL / TinyImageNet WarpGrad / CIFAR100 WarpGrad / TinyImageNet 1.2 1.8 1.6 N.IFT (10, 5) --- FO N.IFT (10, 5) ······ N.IFT (2, 25) 1.7 1.3 1-step 1.1 1.5 DrMAD 1.6 1.2 N.IFT (2, 25) 1.0 1.5 HyperDistill 1.1 1.4 1.4 0.9 1.0 1.3 1.3 0.9 0.8 1.2 1.2 0.8 1.1 0.7 200 400 600 800 200 400 600 800 400 600 800 1K 400 600 800 # Inner-opt. Solved # Inner-opt. Solved # Inner-opt. Solved # Inner-opt. Solved

Experimental Results

Q2. Does HyperDistill provide better generalization performance?

Meta-validation performance (Test Acc)



Meta-test performance (Test Acc)

	Online	# JVPs	ANIL	WarpGrad		MetaWeightNet
	optim.	/ inner-opt.	tinyImageNet	CIFAR100	tinyImageNet	CIFAR100
FO	0	0	53.62±0.06	58.16 ± 0.52	53.54 ± 0.74	N/A
1-step	0	50	53.90 ± 0.43	$58.18{\scriptstyle\pm0.52}$	49.97 ± 2.46	58.45 ± 0.40
DrMAD	Χ	199	49.84±1.35	55.13 ± 0.64	50.71 ± 1.16	57.03 ± 0.42
Neumann IFT	\triangle	$\{55, 60, 75\}$	53.76±0.31	$58.88{\scriptstyle\pm0.65}$	50.15 ± 0.98	59.34 ± 0.27
HyperDistill	0	≈ 58	56.37±0.27	60.91 ± 0.27	55.04 ± 0.52	60.82±0.33

Experimental Results

- Q3. Is HyperDistill a reasonable approximation to the true hypergradient?
- Q4. Is HyperDistill computationally efficient?

Cosine similarity to the true hypergradient



GPU memory consumption and wall-clock runtime

	ANIL
	tinyImageNet
	(Mb) / (s / inner-opt.)
FO	1430 / 6.23
1-step	1584 / 6.80
DrMAD	1442 / 20.88
Neumann IFT	1392 / 7.98
HyperDistill	1638 / 6.92

Conclusion

• The existing gradient-based HO algorithms do not satisfy the four criteria that should be met for their practical use in meta-learning.

- In this paper, we showed that for each online HO step, it is possible to efficiently distill the whole hypergradient indirect term into a single JVP, satisfying the four criteria simultaneously.
- Thank to the accurate hypergradient approximation, HyperDistill could improve meta-training convergence and meta-testing performance, in a computationally efficient manner.

