Evidential Turing Processes

International Conference on Learning Representations 2022

Authors:

- Melih Kandemir, University of Southern Denmark
- Abdullah Akgül, Istanbul Technical University
- ► Manuel Haußmann, *Aalto University*
- ► Gozde Unal, Istanbul Technical University

Paper URL:

```
https://openreview.net/forum?id=84NMXTHYe-
```

Code:

```
https:
```

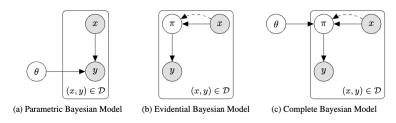
//github.com/ituvisionlab/EvidentialTuringProcess

The Total Calibration Problem

We aim to develop a *standalone* predictor that can minimize the risk of

- ► Model misfit ⇒ Reducible model uncertainty Measured directly by Negative Log-Likelihood (NLL)
- ► Class overlap ⇒ Data Uncertainty Measured indirectly by Expected Calibration Error (ECE)
- ► **Domain mismatch** ⇒ Irreducible model uncertainty Measured indirectly by error of in-domain/out-of-domain classification with predictive uncertainty

Three approaches to Bayesian modeling



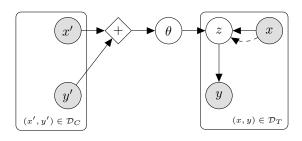
Variances of the posterior predictives decompose as below:

- ► Parametric = Reducible model unc + Data unc
- ► Evidential = Irreducible model unc + Data unc
- ► Complete = Reducible model unc + Irreducible model unc + Data unc

The recipe for total calibration

- 1. Use the Complete Bayesian Model framework
- 2. Learn to calibrate at training time
- 3. Model the relationship of global and local latent variables as a *Neural Process*
- 4. Use a random portion of each minibatch as context
- Accumulate uncertainty information into an external memory
- Use the memory content to determine the hyperparameters of the global latent variable

Neural Processes (Step 3)



The Neural Process is a conditional variational auto-encoder with three additional elements

- ▶ A global variable θ
- ▶ A context set \mathcal{D}_c
- ► A permutation-invariant aggregator function +

External Memory: Neural Turing Machines (Step 5)

A differentiable external memory M, where a value x is queried by a key function $k_{\phi}(h_{\psi}(x),h_{\psi}(x'))$ after being embedded into a latent space via h_{ψ} . It returns

$$v = \sum_{x' \in M} \operatorname{softmax}(k_{\phi}(h_{\psi}(x), h_{\psi}(x')))x'$$

The memory is updated by an application-specific rule

$$M' \leftarrow f(M, x)$$
.

Turing Processes: Neural Turing Machine + **Neural Process**

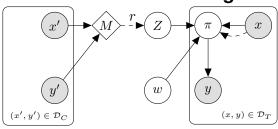
A Turing Process is a collection of random variables $Y = \{y_i | i \in \mathcal{I}\}$ for an index set $\mathcal{I} = \{1, \dots, K\}$ with arbitrary $K \in \mathbb{N}^+$ that satisfy the two properties

i)
$$p_M(Y) = \int \prod_{y_i \in Y} p_M(y_i|\theta) p_M(\theta) d\theta$$
,

ii)
$$p_{M'}(Y|Y') = \int \prod_{y_i \in Y} p(y_i|\theta) p_{M'}(\theta|Y') d\theta$$
.

for another random variable collection Y' of arbitrary size that lives in the same probability space as Y, a probability measure $p_M(\theta)$ with free parameters M and some function M' = r(M, Y').

Target Model: The Evidential Turing Process



$$p(y, \mathcal{D}_T, \pi, \theta) = p(w) \underbrace{p_M(Z)}_{\text{External memory}} \prod_{(x,y) \in \mathcal{D}_T} \left[p(y|\pi) \underbrace{p(\pi|Z, w, x)}_{\text{Input-specific prior}} \right]$$

Local latent variable π is a function of global Z and input x:

- ► Model its dependency on x as in evidential learning
- ▶ Model the relationship of Z and x via an attention mechanism

Case Study: Classification with ETP

Model:

$$Z|M \sim \prod_{r=1}^{R} \mathcal{N}(z_r|m_r, \kappa^2 I),$$

$$w \sim \mathcal{N}(w|0, \beta^{-1}I),$$

$$\pi|w \sim Dir(\pi|\exp(a(v_w(x); Z))),$$

$$y|\pi \sim Cat(y|\pi).$$

Memory update rule:

$$m \leftarrow \mathbb{E}_Z \left[\tanh \left(\gamma m + (1 - \gamma) \sum_{(x,y) \in \mathcal{D}_C} \phi(v_w(x), z) [y + \sigma(v_w(x))] \right) \right].$$

Application 1: Accurate classification with reliable uncertainties

Domain Data (Architecture)	IMDB (LSTM)	Fashion (LeNet5)	SVHN (LeNet5)	CIFAR10 (LeNet5)	CIFAR100 (ResNet18)
Prediction accuracy as % test error					
BNN	16.4 ± 0.6	7.9±0.1	$7.9_{\pm 0.1}$	15.3 ± 0.3	30.2 ± 0.3
EDL	38.3 ± 13.3	8.6 ± 0.1	7.3 ± 0.1	18.5 ± 0.2	45.2 ± 0.4
ENP	50.0 ± 0.0	7.9 ± 0.2	6.7 ± 0.1	14.8 ± 0.2	39.0 ± 0.3
ETP (Target)	$15.8 \pm \scriptstyle{1.3}$	$7.9 {\scriptstyle \pm 0.2}$	$6.9 {\scriptstyle \pm 0.1}$	$15.3 {\pm} 0.2$	29.2 ± 0.3
In-domain calibration as % Expected Calibration Error (ECE)					
BNN	14.4 ± 0.4	$6.7\pm 0.$	$6.5\pm0.$	5.5 ± 0.3	15.2 ± 0.0
EDL	41.1 ± 2.6	3.7 ± 0.2	4.0 ± 0.1	9.0 ± 0.2	5.3 ± 0.4
ENP	0.8 ± 1.6	6.0 ± 0.2	10.7 ± 0.2	7.2 ± 0.3	39.7 ± 0.4
ETP (Target)	3.1 ± 0.4	$2.6 {\pm} 0.2$	$2.6 {\scriptstyle \pm 0.1}$	$\boldsymbol{2.7} {\scriptstyle \pm 0.1}$	6.6 ± 0.1
Model fit as negative test log-likelihood					
BNN	0.47 ± 0.0	0.65 ± 0.0	0.71 ± 0.0	0.50 ± 0.0	1.78 ± 0.0
EDL	0.66 ± 0.1	0.37 ± 0.0	0.34 ± 0.0	0.72 ± 0.0	2.24 ± 0.0
ENP	0.69 ± 0.0	0.34 ± 0.0	0.33 ± 0.0	0.50 ± 0.0	2.52 ± 0.0
ETP (Target)	0.37 ± 0.0	0.29 ± 0.0	0.26 ± 0.0	0.46 ± 0.0	1.36 ± 0.0
Out-of-domain detection as % Area Under ROC Curve					
OOD Data	Random	MNIST	CIFAR100	SVHN	TinyImageNet
BNN	$60.9 \pm \scriptstyle{4.2}$	$75.9{\scriptstyle\pm2.3}$	86.2 ± 0.5	84.1 ± 1.3	97.2 ± 0.5
EDL	$55.1 \pm {\scriptscriptstyle 5.1}$	77.5 ± 2.0	90.9 ± 0.3	79.2 ± 0.7	89.6 ± 0.3
ENP	53.7 ± 5.7	$88.9{\pm}1.0$	92.4 ± 0.4	81.4 ± 0.8	100.0 ± 0.1
ETP (Target)	$59.1 \pm \scriptstyle{5.1}$	$90.0 {\pm 0.9}$	$90.0{\scriptstyle\pm0.4}$	82.1 ± 0.6	99.6 ± 0.1

Application 2: Robustness against data corruption

