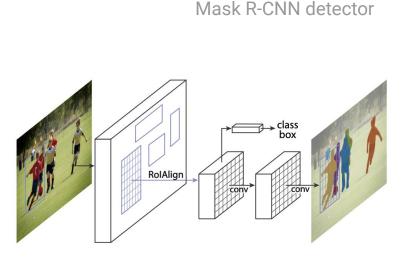
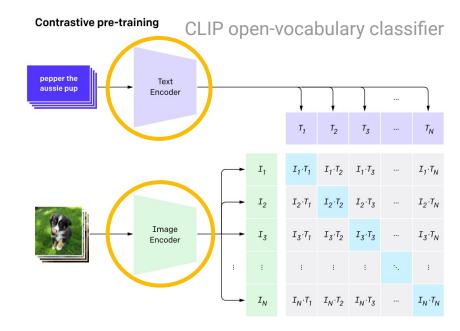
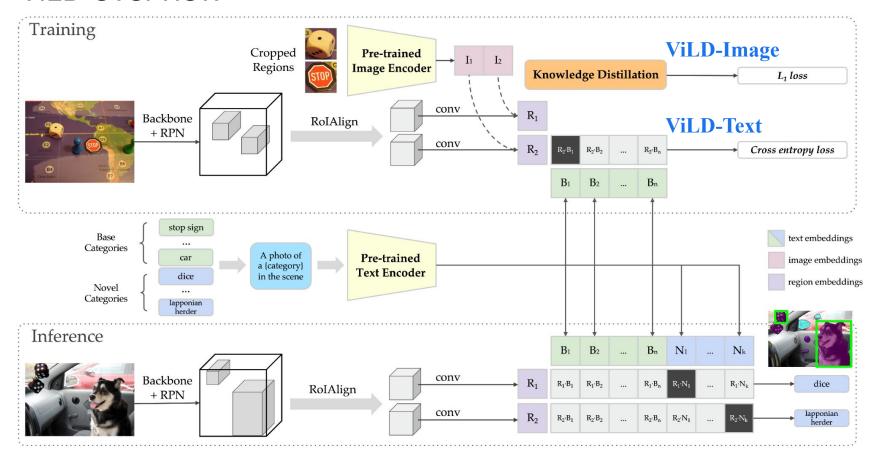

Open-vocabulary Object Detection via Vision and Language Knowledge Distillation

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, Yin Cui


Open-vocabulary detection



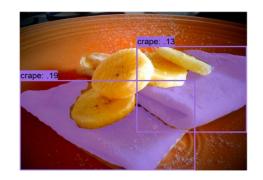
- A new direction for large-vocabulary detection
 - Instead of collecting costly annotations
- Change detection categories during inference
 - Without retraining


Borrow knowledge from open-vocabulary classification model

- Decouple localization and classification
- Localization: class-agnostic modules generalize well
- Classification: Pretrained open-vocabulary classifier → two-stage detector
- *ViLD*: Vision and Language Knowledge Distillation

ViLD overview

Quantitative results on LVIS


- Hold out LVIS rare categories as novel categories (APr), which is the main metric
- Outperformed supervised baseline
- Strongest model is close to fully-supervised challenge winner (SOTA)

Backbone: ResNet152 (except last row)

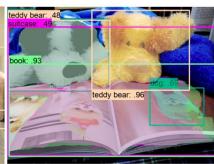
Method	AP_r	AP_c	AP_f	AP
ViLD-text	11.7	25.8	34.4	26.7
ViLD-image	10.8	10.0	8.7	9.6
ViLD (w = 1.0)	18.7	21.1	28.4	23.6
ViLD-ensemble ($w = 2.0$)	18.7	24.9	30.6	26.0
Supervised-RFS (base + novel)	14.4	26.8	34.2	27.6
ViLD-ensemble-ALIGN-b7	26.3	27.2	32.9	29.3
2020 Challenge winner	30.0	41.9	46.0	41.5

Qualitative examples of detecting novel objects (LVIS)

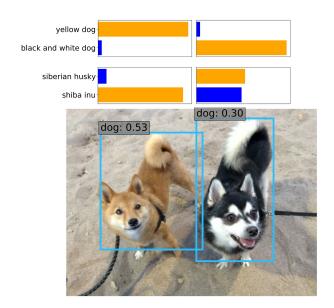
Finetuning-free transfer

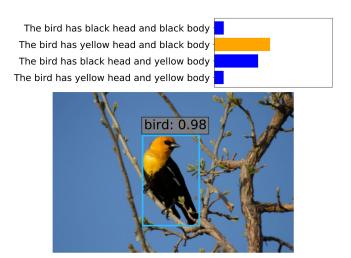
• Finetuning-free transfer to PASCAL / COCO / Objects365 by simply replacing text embeddings

Backbone: ResNet50

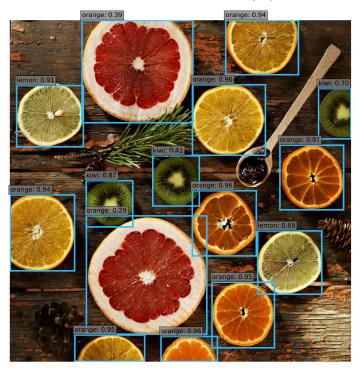

Method	PASCAL VOC†		COCO		Objects365			
	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}
ViLD-text	40.5	31.6	28.8	43.4	31.4	10.4	15.8	11.1
ViLD	72.2	56.7	36.6	55.6	39.8	11.8	18.2	12.6
Finetuning	78.9	60.3	39.1	59.8	42.4	15.2	23.9	16.2
Supervised	78.5	49.0	46.5	67.6	50.9	25.6	38.6	28.0

PASCAL VOC COCO





On-the-fly interactive detection


After detecting pre-defined categories, use on-the-fly free-form text embeddings to recognize more details.

Systematic expansion of dataset vocabulary

Detect fruit with color attributes (expand LVIS vocabulary with 11 colors).

Original dataset vocabulary

Google Research

Thank You

Code: https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild

Colab demo:

https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/models/official/detection/projects/vild/ViLD_demo.ipynb