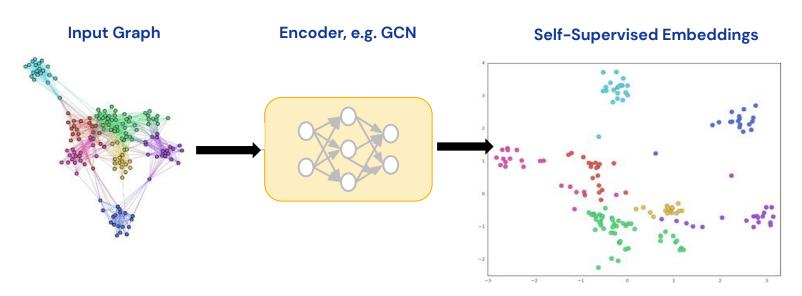
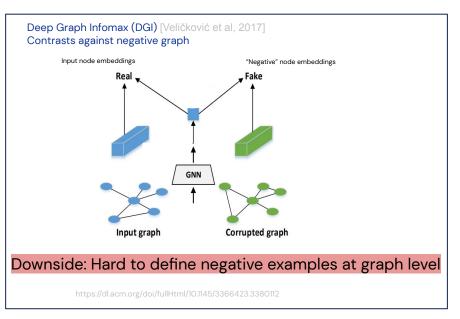
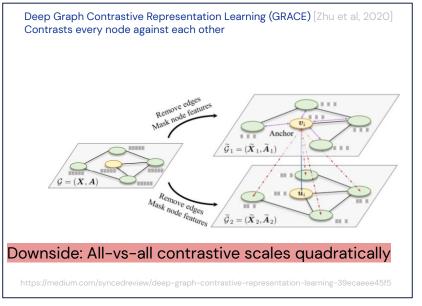
DeepMind


Large-Scale Representation Learning on Graphs via Bootstrapping

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi Munos, Petar Veličković, Michal Valko

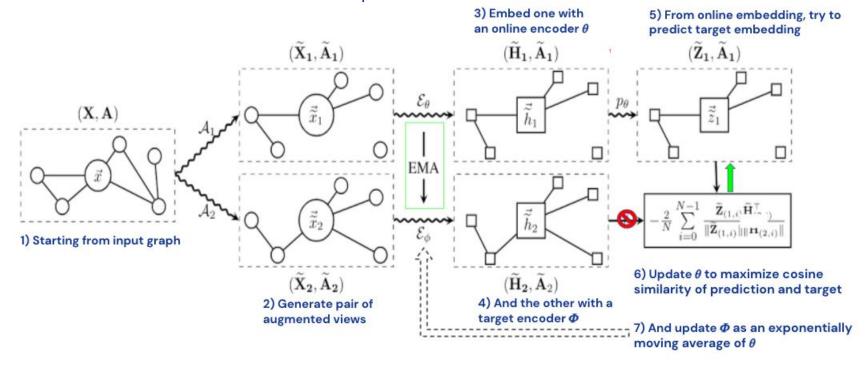
Graph Representation Learning


- Goal: Learn meaningful node representations without supervision
- Why?
 - Unlabeled data cheaper than obtaining labels
 - Pre-training for downstream tasks
 - Auxiliary signal for semi-supervised training



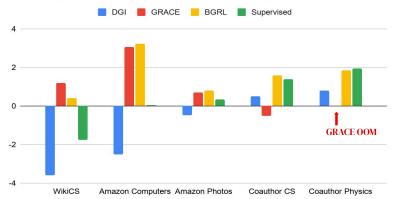
Drawbacks of Existing Methods

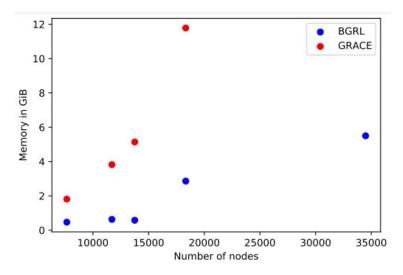
- Contrastive methods
 - Push together similar objects (positive examples)
 - Pull apart dissimilar objects (negative examples)



Our Solution: Bootstrapped Graph Latents (BGRL)

 Key idea: avoid negative examples by bootstrapping embeddings from each node Follows framework of Bootstrap Your Own Latent (BYOL) [Grill et al, 2020] Loss takes linear time to compute

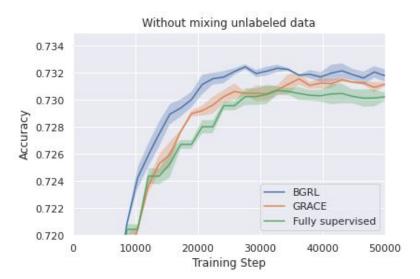




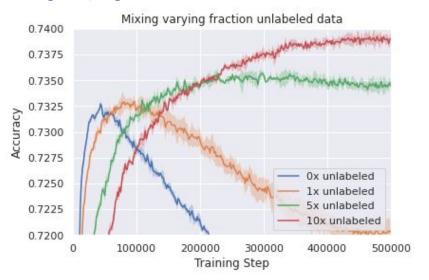
Improved Performance with Lower Computational Cost

- Linear evaluation protocol on standard benchmarks
 - BGRL competitive with both GRACE and supervised learning
 - BGRL uses **5-10x** less memory and scales to largest dataset

Accuracy Relative to Random Embeddings



Application to OGB-Large Scale Challenge


- Microsoft Academic Graph single connected graph, 240M nodes, 1.7B edges, 350GB data
 - Task is to classify arXiv papers by category
 - Only 1% of nodes are classifiable arXiv papers how to effectively use other data?
- Main question: Does BGRL help at super-large scale, for semi-supervised training?
 - o First step simply add BGRL loss on top of supervised loss on 1% labeled data only

Application to OGB-Large Scale Challenge

- Microsoft Academic Graph single connected graph, 240M nodes, 1.7B edges
 - Task is to classify arXiv papers by category
 - Only 1% of nodes are classifiable arXiv papers how to effectively use other data?
- Main question: Does BGRL help at super-large scale, for semi-supervised training?
 - Second step try mixing varying amounts of unlabeled nodes for BGRL loss

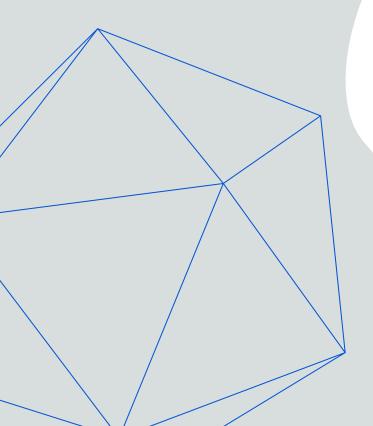
Application to OGB-Large Scale Challenge

- Microsoft Academic Graph single connected graph, 240M nodes, 1.7B edges
 - Task is to classify arXiv papers by category
 - Only 1% of nodes are classifiable arXiv papers how to effectively use other data?
- Main question: Does BGRL help at super-large scale, for semi-supervised training?
 - Final step mixing 10x unlabeled data delays overfitting, thus can run 10x longer
 - BGRL key to our submission achieving 2nd place in KDD Cup OGB-LSC

Final leaderboard for MAG240M-LSC

Classification accuracy. The higher, the better.

Rank	Team	Test Accuracy
1	BD-PGL	0.7549
2	Academic	0.7519 5.3M Parameters
3	Synerise AI	0.7460



Conclusions

- BGRL: new method for self-supervised representation learning
- Competitive with contrastive methods, without using negative examples
- Works in wide range of settings: frozen/semi-supervised training,
 full-graph/subsampled neighborhood training, with simple augmentations
- Update step takes time and memory linear in graph size, highly scalable
- Effective method to leverage unlabeled data on huge graphs, key to our entry on OGB-Large Scale Challenge

DeepMind

Thank You!

For any questions please contact: thakoor@google.com

Experiment code: https://github.com/nerdslab/bgrl

OGB-LSC Contest submission:

https://github.com/deepmind/deepmind-research/tree/master/ogb_lsc/mag

