Eliminating Sharp Minima from SGD with Truncated Heavy-tailed Noise

Xingyu Wang*, Sewoong Oh[†], Chang-Han Rhee*

Northwestern University*, University of Washington†

ICLR 2022

• Generalization Mystery of Stochastic Gradient Descent (SGD)

Generalization Mystery of Stochastic Gradient Descent (SGD)

```
0123456789

0123456789

0123456789

0123456789

0123456789

0123456789
```

Training Set

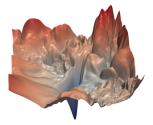
Generalization Mystery of Stochastic Gradient Descent (SGD)

Training Set

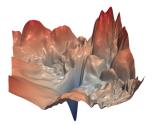
Test Set

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

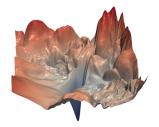
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima



- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Flat minima (as opposed to sharp minima) generalize better. (Jiang et al., 2020)



- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Flat minima (as opposed to sharp minima) generalize better. (Jiang et al., 2020)



• Q: SGD prefers flat minima?

$$\mathsf{GD} \qquad X_j = X_{j-1} - \eta \ \nabla f(X_{j-1})$$

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

Traditional Assumption: Light-tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{2} \right)$$

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{N} \right)$$
 Heavy-tailed

Traditional Assumption: Light-tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$
 Heavy-tailed

• Heavy-tailed Assumption: $\mathbb{E}Z_i = 0$, $\mathbb{P}(\|Z_i\| > x) \approx x^{-\alpha}$

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

 $^{\nwarrow}$ Heavy-tailed

- Heavy-tailed Assumption: $\mathbb{E}Z_i = 0$, $\mathbb{P}(||Z_i|| > x) \approx x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$
 Heavy-tailed

- Heavy-tailed Assumption: $\mathbb{E}Z_i = 0$, $\mathbb{P}(\|Z_i\| > x) \approx x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

[►] Heavy-tailed

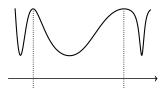
- Heavy-tailed Assumption: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x) \approx x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

[►] Heavy-tailed

- Heavy-tailed Assumption: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x) \approx x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)



Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$
 Heavy-tailed

- Heavy-tailed Assumption: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x) \approx x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

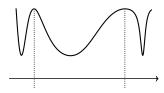
Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

Heavy-tailed

- Heavy-tailed Assumption: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x) \approx x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

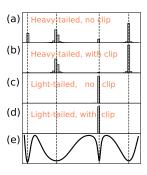
Our Work: Complete Elimination of Sharp Minima



$$X_{j} = X_{j-1} - \frac{\varphi_{b}(\eta \nabla f(X_{j-1}) + \eta Z_{j})}{\|\varphi_{b}(x)\|}; \quad \frac{\varphi_{b}(x)}{\|x\|} = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

$$X_j = X_{j-1} - \varphi_b(\eta \nabla f(X_{j-1}) + \eta Z_j); \quad \varphi_b(x) = \min\{b, ||x||\} \cdot \frac{x}{||x||}$$

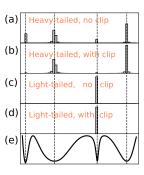
Gradient Clipping
$$\downarrow X_j = X_{j-1} - \varphi_b (\eta \nabla f(X_{j-1}) + \eta Z_j); \quad \varphi_b(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$



Theorem (Wang, Oh, Rhee, 2022)

Under suitable conditions, for any β large enough and any t > 0,

$$\frac{1}{\mid t/\eta^\beta\mid} \int_0^{\lfloor t/\eta^\beta\rfloor} 1\Big\{X_{\lfloor u\rfloor}^\eta \text{ is around "narrow" minima}\Big\} du \xrightarrow{\mathrm{P}} 0 \text{ as } \eta \downarrow 0.$$

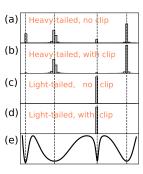


Theorem (Wang, Oh, Rhee, 2022)

Under suitable conditions, for any β large enough and any t > 0,

$$\underbrace{\frac{1}{\lfloor t/\eta^\beta\rfloor} \int_0^{\lfloor t/\eta^\beta\rfloor} \mathbf{1}\Big\{X_{\lfloor u\rfloor}^\eta \text{ is around "narrow" minima}\Big\} du \overset{\mathrm{P}}{\to} 0 \text{ as } \eta \downarrow 0.}_{}$$

Proportion of time at narrow minima

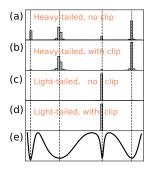


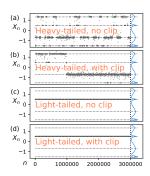
Theorem (Wang, Oh, Rhee, 2022)

Under suitable conditions, for any β large enough and any t > 0,

$$\frac{1}{\lfloor t/\eta^\beta \rfloor} \int_0^{\lfloor t/\eta^\beta \rfloor} 1 \Big\{ X_{\lfloor u \rfloor}^{\eta} \text{ is around "narrow" minima} \Big\} du \xrightarrow{P} 0 \text{ as } \eta \downarrow 0.$$

Proportion of time at narrow minima

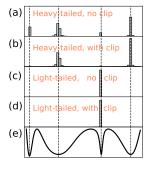


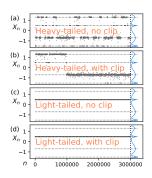


Theorem (Wang, Oh, Rhee, 2022)

Under suitable conditions,

$$\{X_{\mid t \cdot \lambda(\eta) \mid}^{\eta}: \ t \geq 0\} \Rightarrow \{Y_t: \ t \geq 0\} \ \text{as} \ \eta \downarrow 0$$



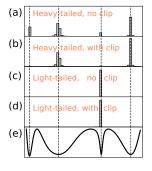


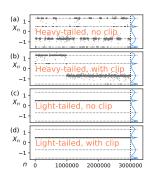
Theorem (Wang, Oh, Rhee, 2022)

Under suitable conditions,

 $\sqrt{\text{time-scaled SGD}}$

$$\{X_{\lfloor t \cdot \lambda(\eta) \rfloor}^{\eta}: \ t \geq 0\} \Rightarrow \{Y_t: \ t \geq 0\} \ \text{as} \ \eta \downarrow 0$$





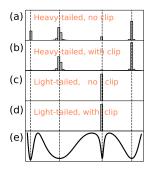
Theorem (Wang, Oh, Rhee, 2022)

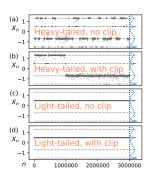
Under suitable conditions,

√ time-scaled SGD

$$\{X^\eta_{\lfloor t\cdot \lambda(\eta)\rfloor}:\ t\geq 0\}\Rightarrow \{Y_t:\ t\geq 0\}\ \textit{as}\ \eta\downarrow 0$$

where Y is a continuous-time Markov chain that only visits "wide" minima.





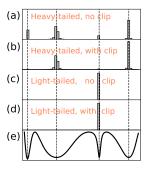
Theorem (Wang, Oh, Rhee, 2022)

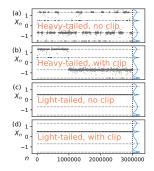
Under suitable conditions,

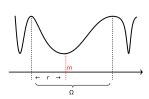
√ time-scaled SGD

$$\{X^\eta_{\lfloor t\cdot \lambda(\eta)\rfloor}:\ t\geq 0\}\Rightarrow \{Y_t:\ t\geq 0\}\ \textit{as}\ \eta\downarrow 0$$

where Y is a continuous-time Markov chain that only visits "wide" minima.







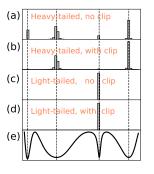
Theorem (Wang, Oh, Rhee, 2022)

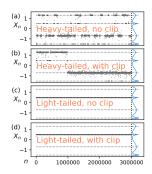
Under suitable conditions,

√time-scaled SGD

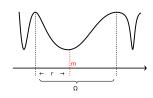
$$\{X^\eta_{\lfloor t\cdot \lambda(\eta)\rfloor}:\ t\geq 0\}\Rightarrow \{Y_t:\ t\geq 0\}\ \textit{as}\ \eta\downarrow 0$$

where Y is a continuous-time Markov chain that only visits "wide" minima.





Required # of jumps: $I^* = \lceil r/b \rceil$



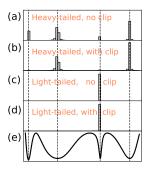
Theorem (Wang, Oh, Rhee, 2022)

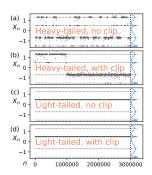
Under suitable conditions,

√time-scaled SGD

$$\{X_{\mid t \cdot \lambda(\eta) \mid}^{\eta}: \ t \geq 0\} \Rightarrow \{Y_t: \ t \geq 0\} \ \text{as} \ \eta \downarrow 0$$

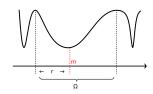
where Y is a continuous-time Markov chain that only visits "wide" minima.





Required # of jumps: $I^* = \lceil r/b \rceil$

Exit Time: $O(1/\eta^{\alpha+(l^*-1)(\alpha-1)})$



ullet X: current weights; g_Y : stochastic gradient under method Y.

- X: current weights; g_Y : stochastic gradient under method Y.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

- X: current weights; g_Y : stochastic gradient under method Y.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SGD}}(X) + \text{"Heavy-tailed Noise"}$$

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

• Flatter geometry & Improved generalization performance

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Flatter geometry & Improved generalization performance
- Requires both **heavy-tailed** noise and **truncation**

CIFAR10-VGG11	SB + Clip	Our 1	Our 2
Test Accuracy	89.54%	90.76%	90.45%
Expected Sharpness	0.167	0.085	0.096
PAC-Bayes Sharpness	$1.31 imes 10^4$	$9 imes 10^3$	10^{4}
Maximal Sharpness	1.66×10^{4}	1.29×10^{4}	1.22×10^4
CIFAR100-VGG16	SB + Clip	Our 1	Our 2
Test Accuracy	56.32%	65.44%	62.99%
Expected Sharpness	0.857	0.441	0.479
PAC-Bayes Sharpness	2.49×10^4	$1.9 imes 10^4$	$1.98 imes 10^4$
Maximal Sharpness	2.75×10^4	2.12×10^4	2.16×10^4

• More training techniques: Data augmentation, learning rate scheduler.

Conclusion

Theoretical Contribution

- Rigorously established that truncated heavy-tailed noises can eliminate sharp minima
- First exit time analysis and metastability for heavy-tailed SGD

Algorithmic Contribution

• Proposed a tail-inflation strategy to find flatter solution with better generalization