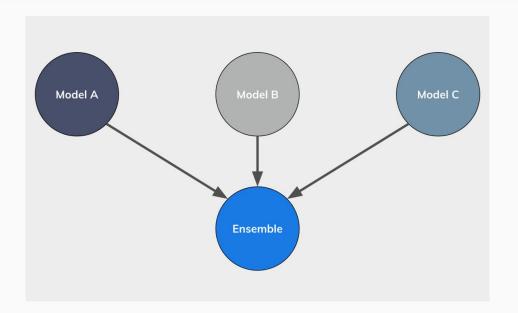
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks

Rahim Entezari, Hanie Sedghi, Olga Saukh, Behnam Neyshabur

Motivation

Form an ensemble model

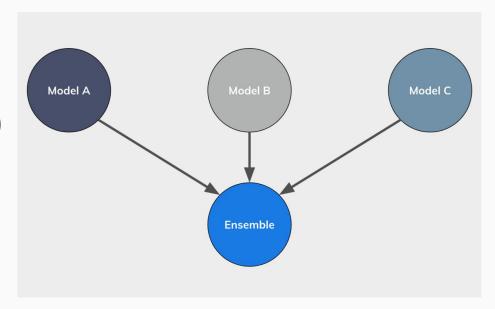
- In output space
- In weight space



Motivation

Form an ensemble model

- In output space
- In weight space (Embedded ML)

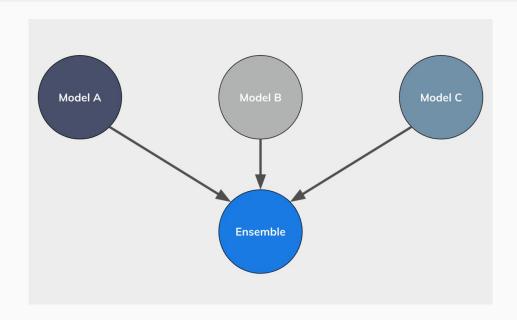


Motivation

Ensemble by weight averaging

requirements:

- 1. Functionally diverse solutions
- 2. Residing in one basin



Linear Mode Connectivity

Functionally different solutions:

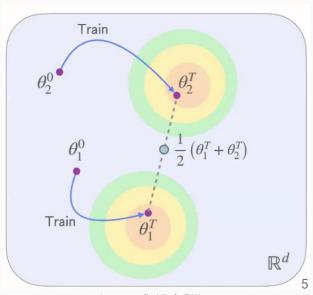


Image credit: Mitchell Wortsman

Linear Mode Connectivity

Functionally different solutions:

Weight space averaging fails

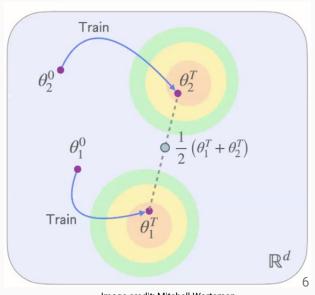
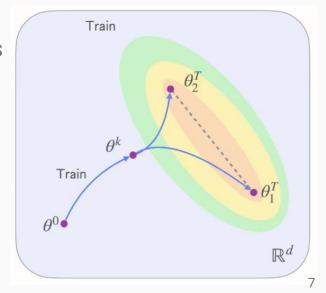


Image credit: Mitchell Wortsman

Linear Mode Connectivity

Same basin:

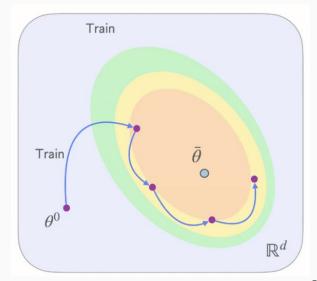
When part of training trajectory is shared, the solutions are **linearly mode connected** (Frankle et al., 2019).



Stochastic Weight Averaging

Same basin:

e.g. SWA (Izmailov et al., 2018)

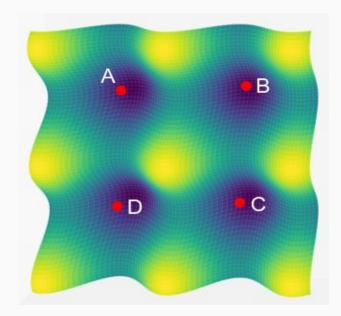


Question

Is there any way to make different solutions in one basin?

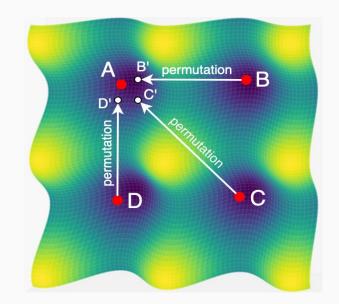
Conjecture

A, B, C, and D are minimas in different basins with barriers between pairs.



Conjecture

Taking permutations into account, there is likely no barrier in the linear interpolation between SGD solutions.



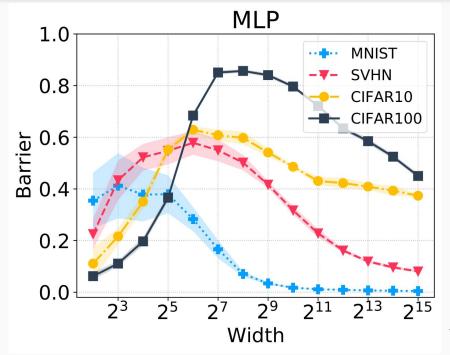
Part 1: Observations over loss landscape shape

Barrier

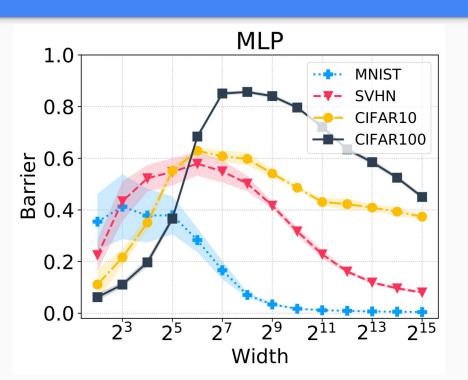
$$B(\theta_1, \theta_2) = \sup_{\alpha} [[\mathcal{L}(\alpha \theta_1 + (1 - \alpha)\theta_2)] - [\alpha \mathcal{L}(\theta_1) + (1 - \alpha)\mathcal{L}(\theta_2)]]$$

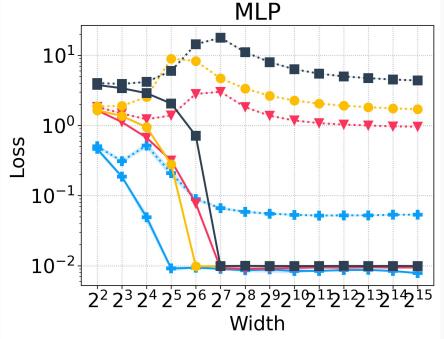
Effect of Width on barrier size

As the width increases, the barrier first increases and then decreases



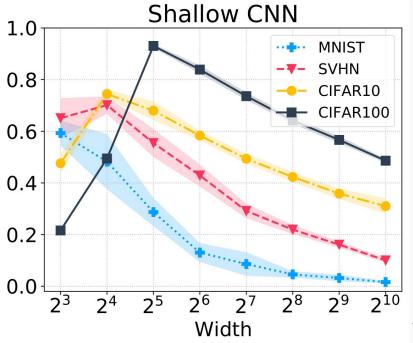
Deep Double Descent in Barrier





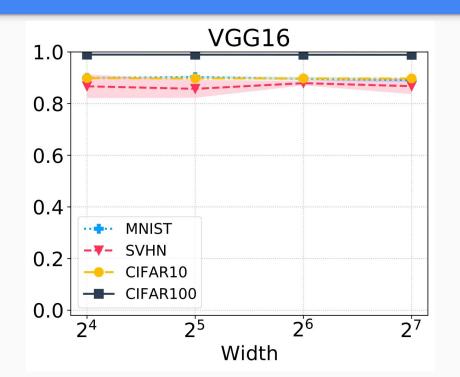
Effect of Width on barrier size

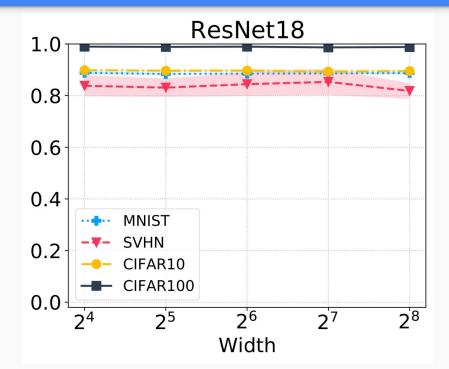
As the width increases, the barrier first increases and then decreases



Effect of Width on barrier size:

Barrier saturates at high level in deeper models

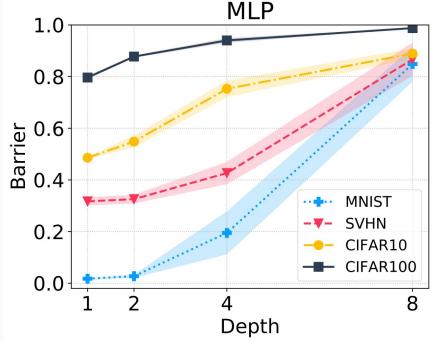




Effect of **Depth** on barrier size

Low barrier when number of layers are low

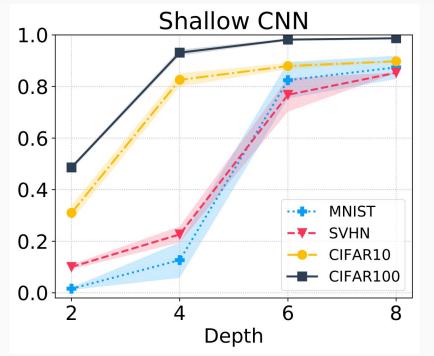
Fast and significant barrier increase as more layers are added



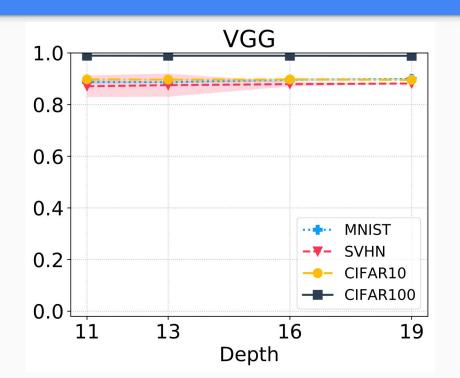
Effect of **Depth** on barrier size

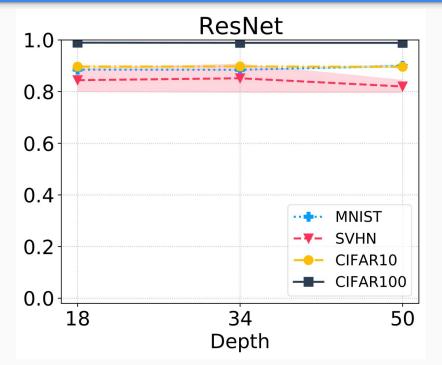
Low barrier when number of layers are low

Fast and significant barrier increase as more layers are added



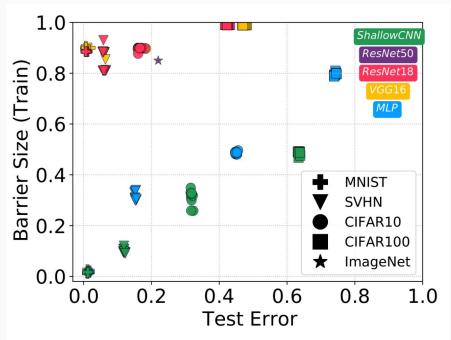
Effect of **Depth** on barrier size





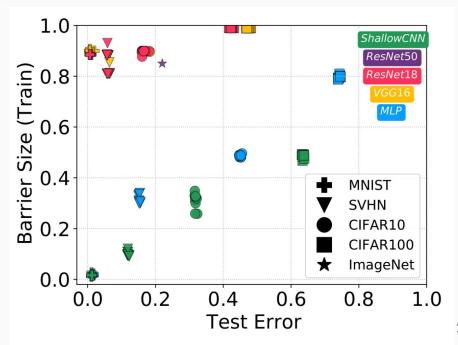
Effect of **Task Complexity** on barrier size

(architecture, task) has lower barrier if the test error is lower



Effect of **Task Complexity** on barrier size

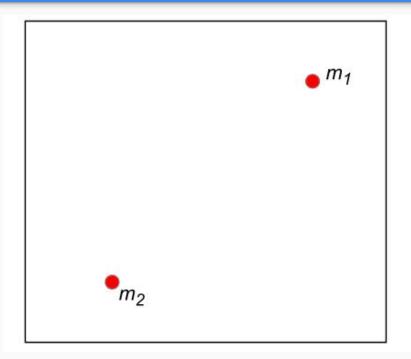
Effect of depth is stronger than (architecture, task) which leads to high barrier values for deep nets



Part 2: evidences to support conjecture

Conjecture: recall

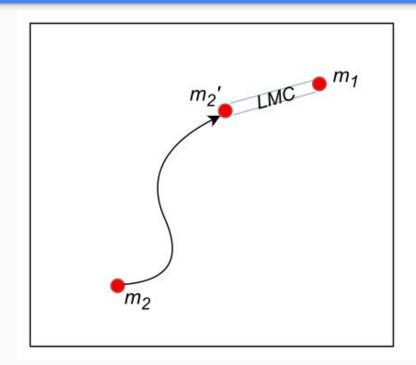
m₁, m₂ are trained and converged



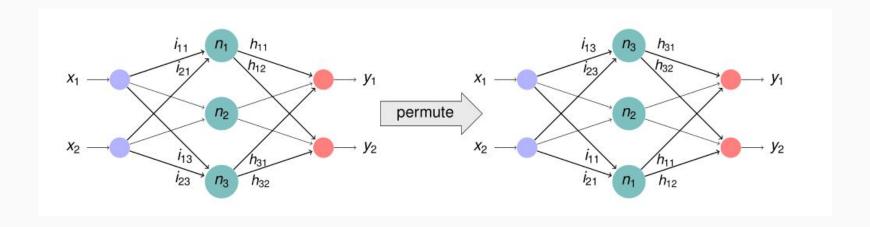
Conjecture: recall

m₁, m₂ are trained and converged

There exists a permutation applied to m_2 , making m_1 and m_2 ' Linearly Mode Connected.

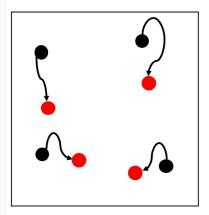


Permutation



Real-world vs. Our model

Real World



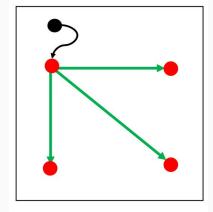
Random Init.

- → SGD Path
- Final parameters

We train networks by running SGD with different random seeds and different initialization.

Real-world vs. Our model

Our Model

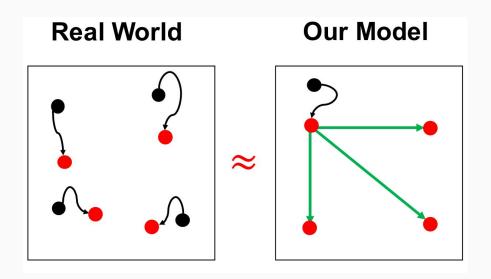


Random Init.

- → SGD Path
- Final parameters
- → Random Perm.

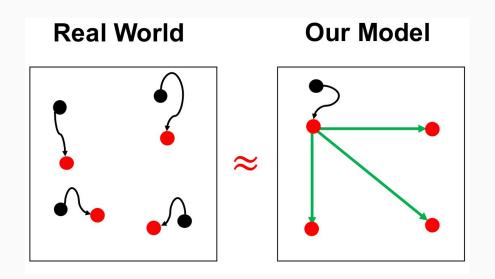
Different final networks are obtained by applying random permutations to the same SGD solution.

Real-world vs. Our model



Our model satisfies the conjecture

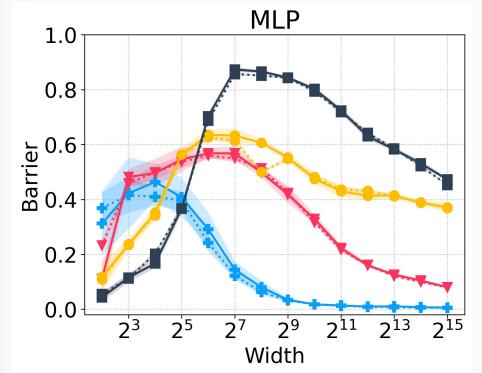
Real-world vs. Our model



- Our model satisfies the conjecture
- We show that Real world ~ Our model

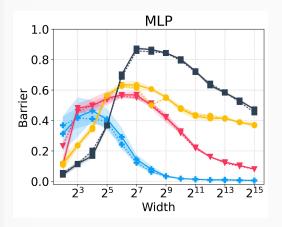
Real-world vs. Our model

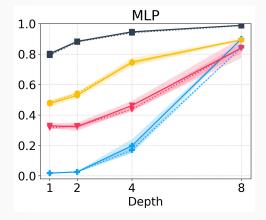
Similar loss barrier between real world and our model **BEFORE** permutation search

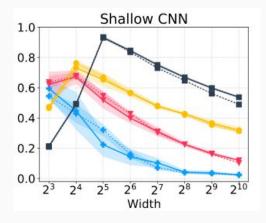


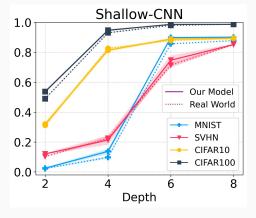
Real-world vs. Our model

Similar loss barrier between real world and our model **BEFORE** permutation search, across all datasets, architectures, width, and depth







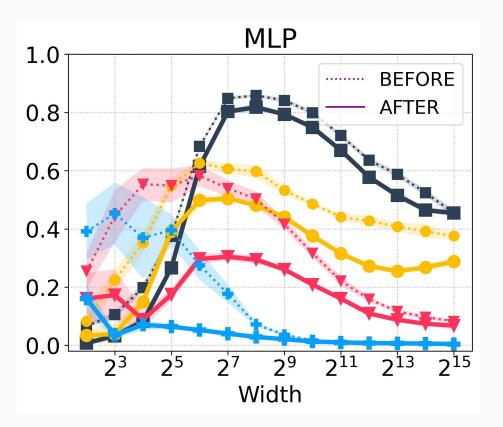


Permutation Search: Simulated Annealing

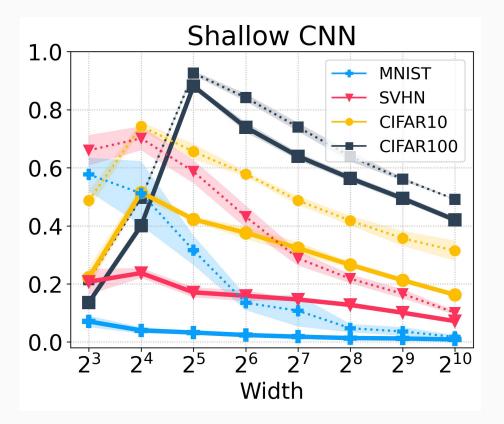
Algorithm 1 Simulated Annealing (SA) for Permutation Search 1: procedure $SA(\{\theta_i\}, i = 1..n, n \ge 2)$ \triangleright Goal: minimize the barrier between n solutions 2: $\pi_i = \pi_0, \forall i = 1..n$ 3: for k = 0; $k < k_{\text{max}}$; k++ do 4: $T \leftarrow \text{temperature}(\frac{k+1}{k_{\text{max}}})$ 5: Pick random candidate permutations $\{\hat{\pi}_i\}, \forall i = 1..n$ 6: if $\Psi(P(\theta_i, \hat{\pi}_i)) < \Psi(P(\theta_i, \pi_i))$ then \triangleright Ψ : barrier objective function

return $\{\pi_i\}$

Simulated Annealing: Performance

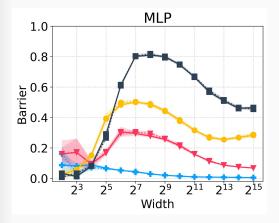


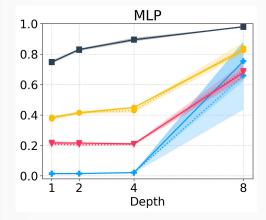
Simulated Annealing: Performance

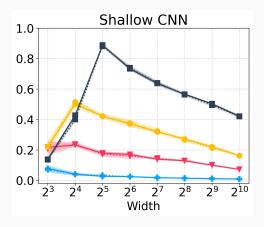


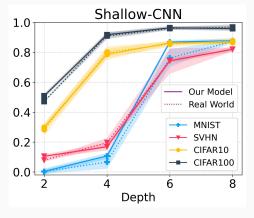
Real-world vs. Our model

Similar loss barrier between real world and our model **AFTER** permutation search

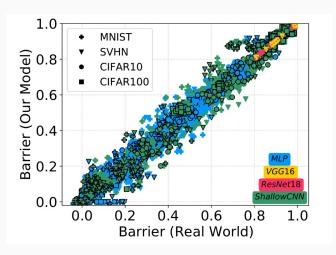








Real-world vs. Our model



We show that Real world ~ Our model

Takeaways

- One way to form ensembles is to weight average solutions
- Conjecture: we can make different SGD solutions in one basin using permutations
- Our theoretical results + extensive experiments fall short of refuting our bold conjecture.

Thanks

Code: https://github.com/rahimentezari/PermutationInvariance

