Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop

Peng Jin^{1,2}

Xitong Zhang^{1,3}

Yinpeng Chen⁴

Sharon Xiaolei Huang²

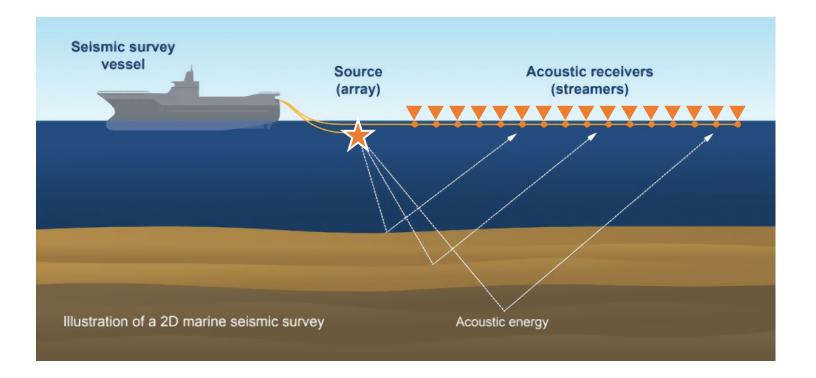
Zicheng Liu⁴

Youzuo Lin¹

¹Los Alamos National Laboratory ²The Pennsylvania State University ³Michigan State University ⁴Microsoft Research

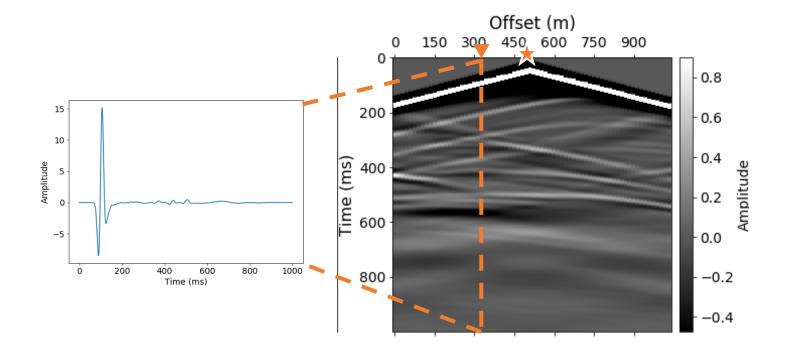
Full-Waveform Inversion (FWI)

Geophysical properties (e.g., velocity) can be obtained via seismic surveys.

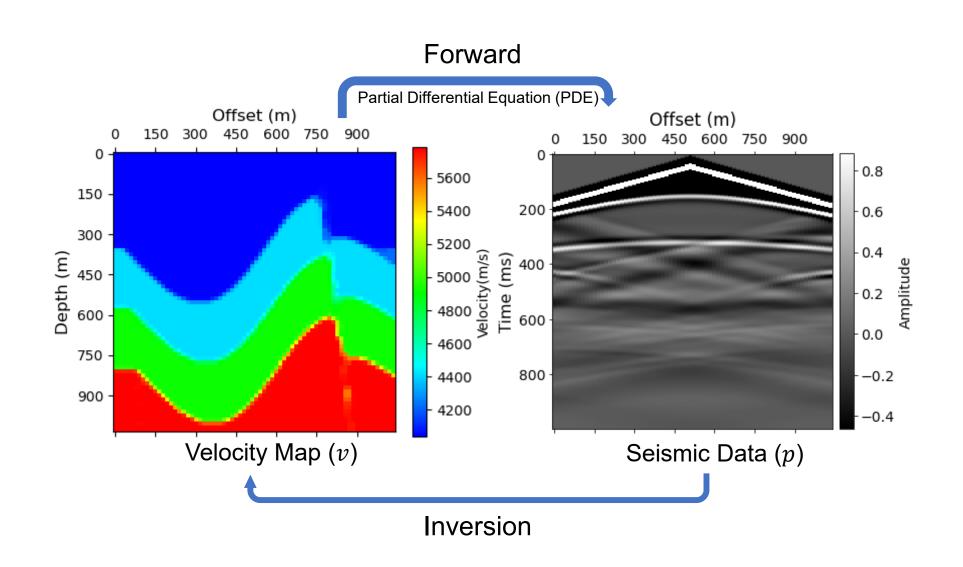


Full-Waveform Inversion (FWI)

Geophysical properties (e.g., velocity) can be obtained via seismic surveys.



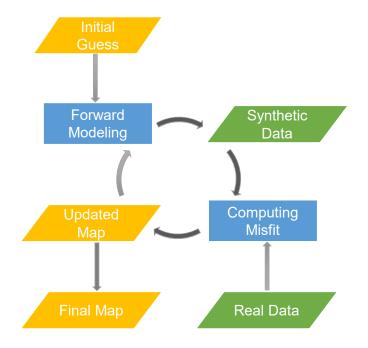
Full-Waveform Inversion (FWI)



Can we leverage the advantages of both directions?

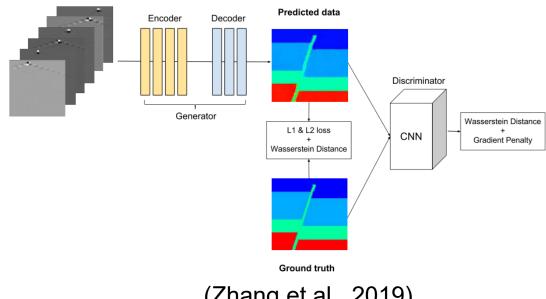
Motivation

Physics-driven FWI



- No ground truth needed
- High computational cost Expensive to obtain a good initial guess

Data-driven FWI

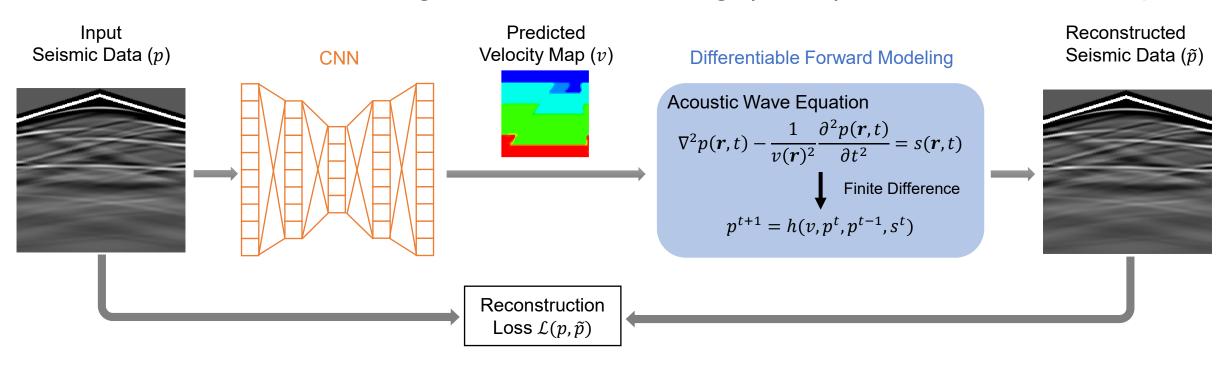


(Zhang et al., 2019)

- No initial guess needed Have certain level of generalization
- Require ground truth velocity maps for training

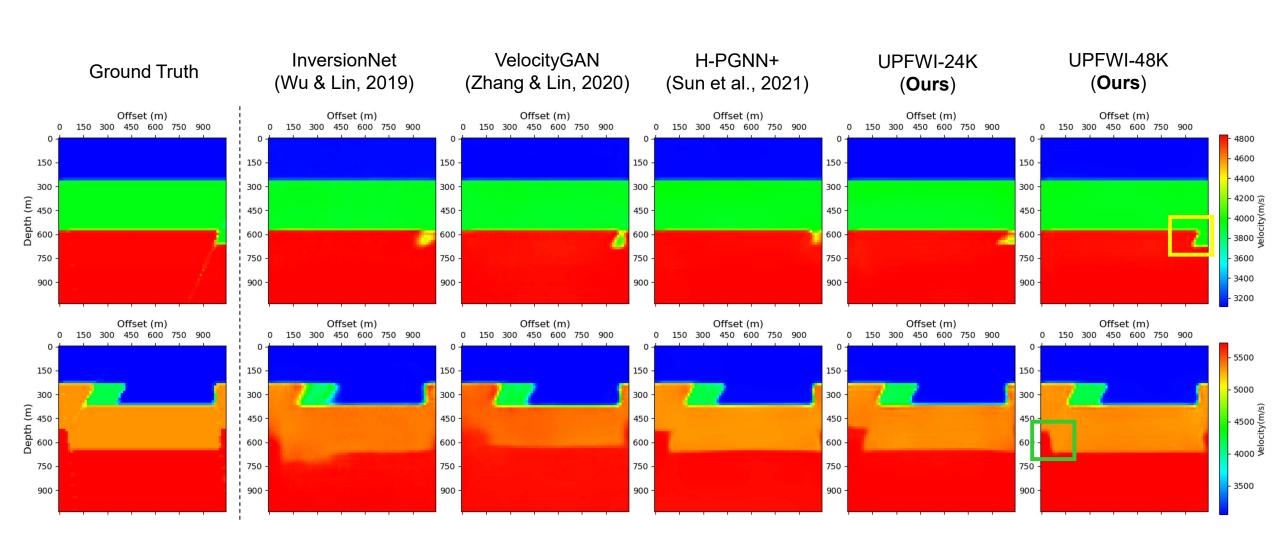
Method

Main idea: connecting forward modeling (PDE) and CNN in a loop.

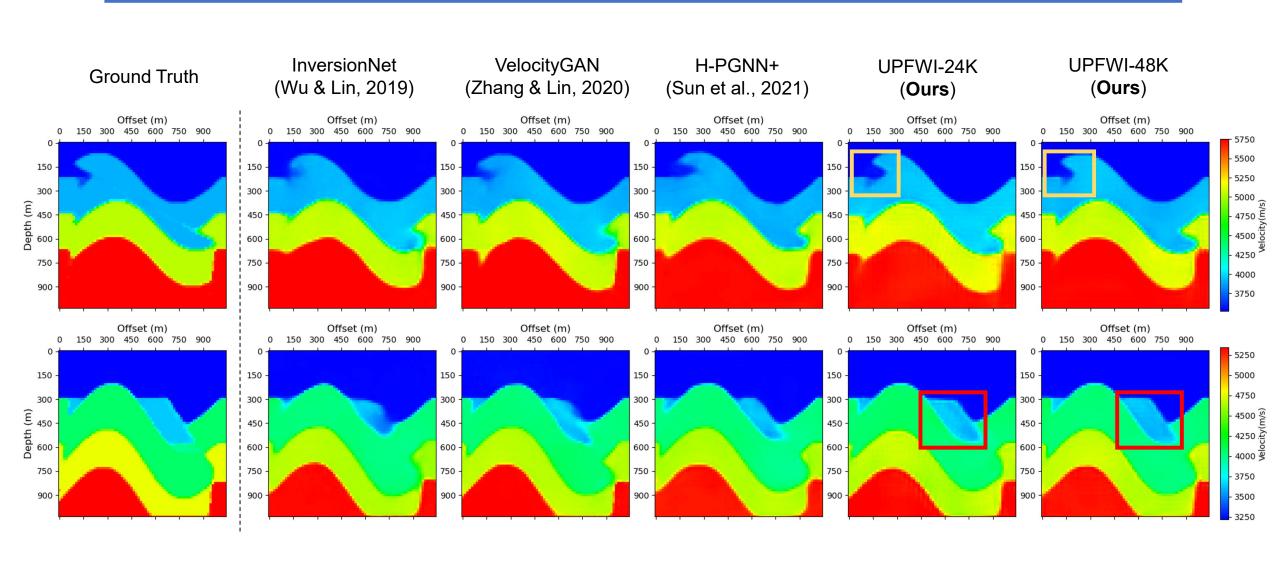


$$\mathcal{L}(\boldsymbol{p}, \widetilde{\boldsymbol{p}}) = \mathcal{L}_{pixel}(\boldsymbol{p}, \widetilde{\boldsymbol{p}}) + \mathcal{L}_{perceptual}(\boldsymbol{p}, \widetilde{\boldsymbol{p}})$$

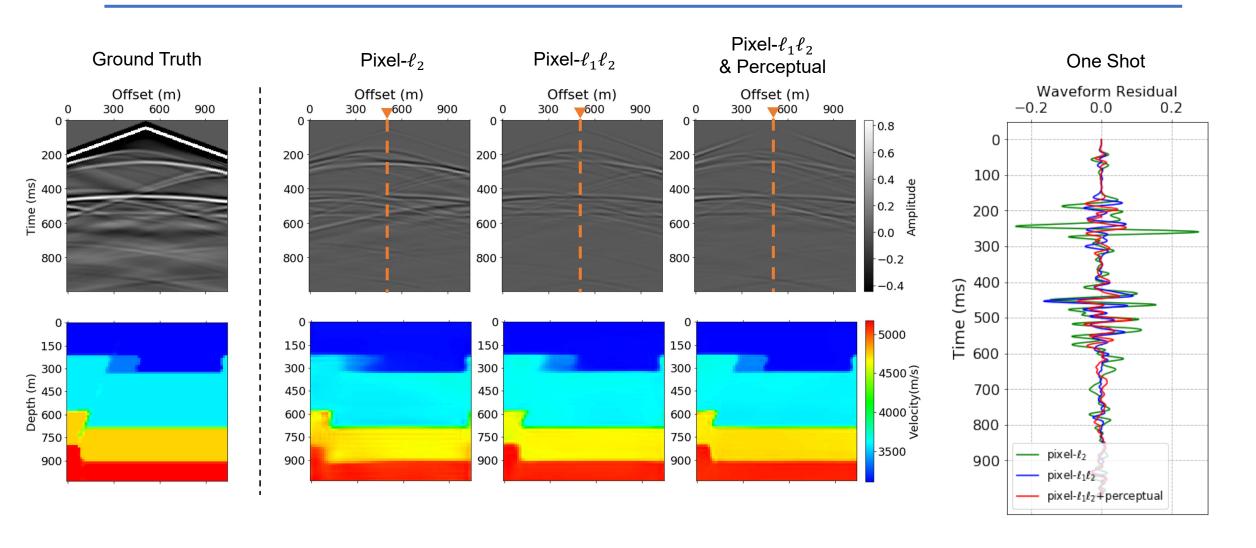
Results (FlatFault)



Results (CurvedFault)



Ablations (Loss Terms)



Unsupervised Learning of Full-Waveform Inversion: Connecting CNN and Partial Differential Equation in a Loop

Thank you for listening!

Our dataset is integrated in a follow-up benchmark dataset available at: https://openfwi-lanl.github.io/