

Discovering and Explaining the Representation Bottleneck of DNNs

Huiqi Deng*, Qihan Ren*, Hao Zhang, Quanshi Zhang†

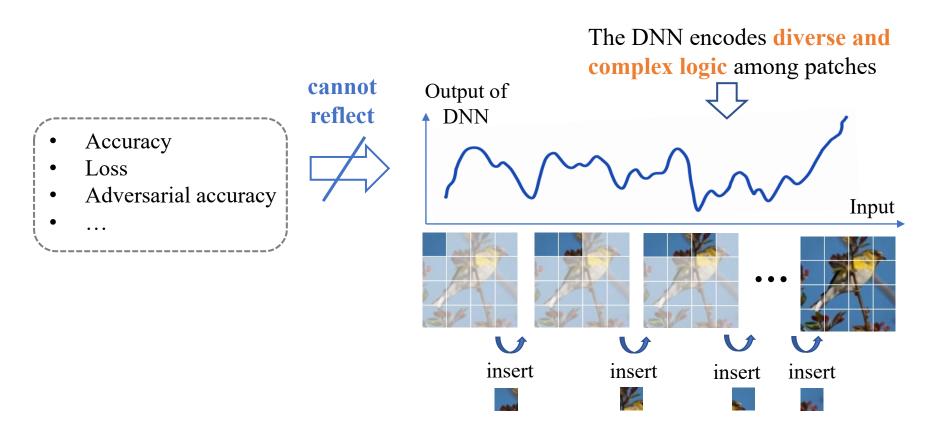
Shanghai Jiao Tong University

^{*} Equal contribution.

[†] Correspondence.

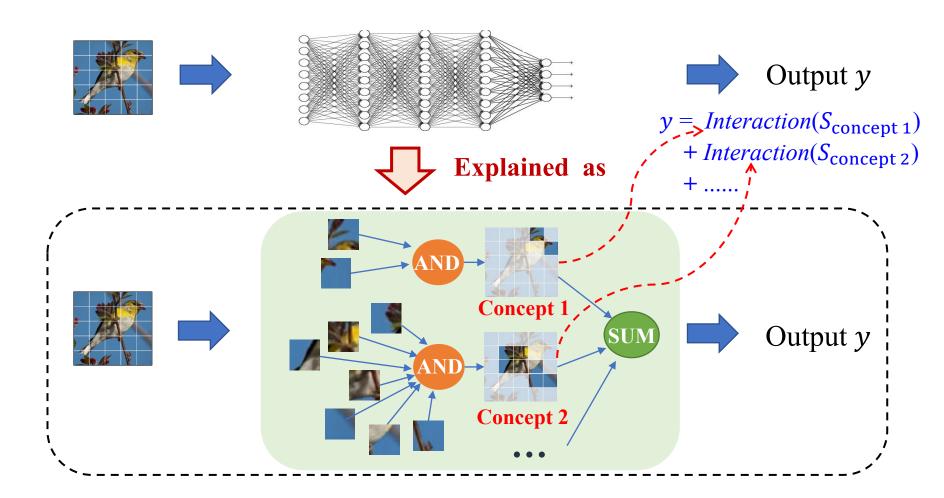
Previous studies used a single scalar metric to analyze an entire complex DNN

• A single scalar metric cannot reflect the diversity of reasons that contribute to the performance of an entire complex DNN.



Instead, we aim to explore the diverse reasons for the performance of an entire complex DNN

• In theory, we prove that the **performance**, such as accuracy/loss/... can be **explained** and **decomposed** into massive **multi-order interaction concepts**, which reflects the **diverse reasons** for the performance.

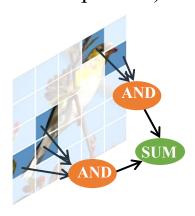


Are there common tendencies of DNNs in encoding concepts?

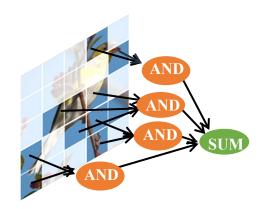
The representation bottleneck phenomenon:

- A DNN is more likely to encode both too simple and too complex interaction concepts.
- A DNN is **less likely** to encode **moderately complex** interaction concepts.

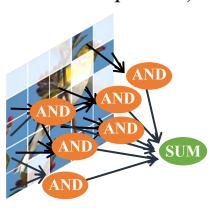
(composed of a few patches)



moderately complex concepts
(composed of
a middle number of patches)

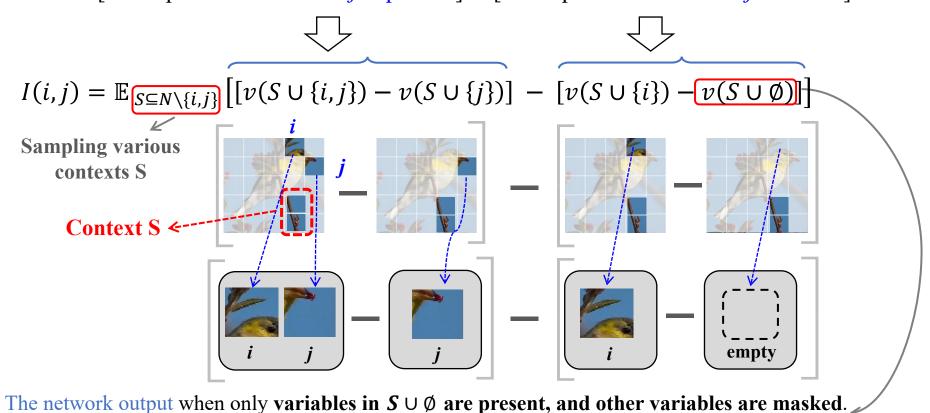


complex concepts
 (composed of
 massive patches)



Definition of interaction concepts

- **Background:** Input variables do not contribute to the network output independently, but **interact with each other** to form **interaction concepts** for inference.
- The interaction between patch i and patch j is defined as
 [the importance of i when j is present] [the importance of i when j is absent]

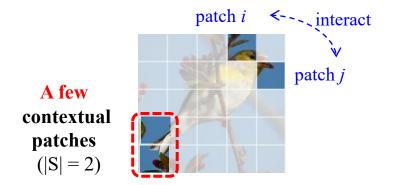


Complexity of interaction concepts

• The interaction between i, j can be further **decomposed** into the sum of **multi-order interactions**. Here, **the order m** (the number of contextual variables S) reflects the **complexity** of interaction concepts.

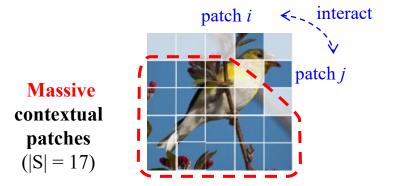
$$I(i,j) = \frac{1}{n-1} \sum_{m=0}^{n-2} I^{(m)}(i,j)$$

$$I^{(m)}(i,j) = \mathbb{E}_{S \subseteq N \setminus \{i,j\}, |S|=m} [[v(S \cup \{i,j\}) - v(S \cup \{j\})] - [v(S \cup \{i\}) - v(S)]]$$



Simple interaction concept

= Interaction(i, j | context with 2 patches)

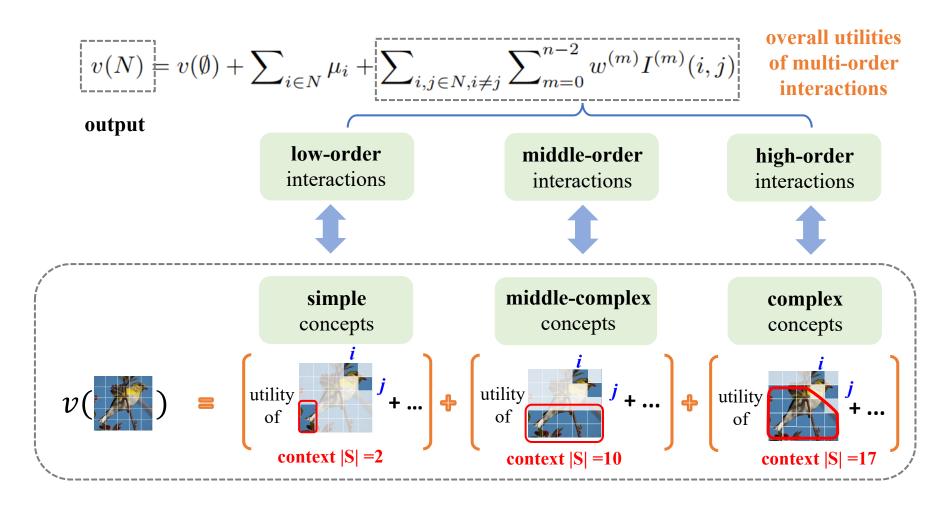


Complex interaction concept

= Interaction(i, j | context with 17 patches)

The network output can be decomposed into utilities of interaction concepts of different complexities

We theoretically prove the following efficiency axiom:



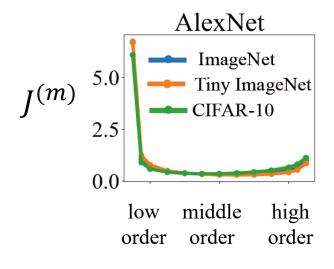
Discovering the representation bottleneck of DNNs

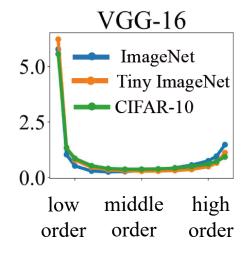
Representation bottleneck: a DNN usually encodes strong low-order and high-order interactions, but encodes weak middle-order interactions.

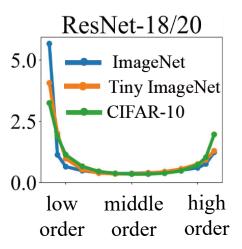
• We define the **relative strength** of the *m*-th order interaction.

$$J^{(m)} = \frac{\mathbb{E}_{x \in \Omega}[\mathbb{E}_{i,j}[|I^{(m)}(i,j|x)|]]}{\mathbb{E}_{m'}[\mathbb{E}_{x \in \Omega}[\mathbb{E}_{i,j}[|I^{(m')}(i,j|x)|]]]}$$

where the strength of interaction $I^{(m)}(i,j)$ is defined as $\left|I^{(m)}(i,j)\right|$







Theoretically explaining the representation bottleneck

• The learning effects of the entire DNN can be decomposed into the sum of the learning effects of multi-order interactions.

$$\Delta W = -\eta \frac{\partial L}{\partial v(N)} \frac{\partial v(N)}{\partial W} = \Delta W_U + \sum_{m=0}^{n-2} \sum_{i,j \in N, i \neq j} R^{(m)} \frac{\partial I^{(m)}(i,j)}{\partial W},$$

the learning effects of the entire DNN

the learning effects of $I^{(m)}(i,j)$

Theorem 1. (Proof in Appendix B) Assume $\mathbb{E}_{i,j,S}[\frac{\partial \Delta v(i,j,S)}{\partial W}] = \mathbf{0}$. Let σ^2 denote the variance of each dimension of $\frac{\partial \Delta v(i,j,S)}{\partial W}$. Then, we have $\mathbb{E}_{i,j}[\Delta W^{(m)}(i,j)] = \mathbf{0}$ and $\mathrm{Var}_{i,j}[\Delta W^{(m)}(i,j)] = \mathbf{1} \cdot (\eta \frac{\partial L}{\partial v(N)} \frac{n-m-1}{n(n-1)})^2 \sigma^2 / \binom{n-2}{m}$. Besides, $\mathbb{E}_{i,j}[\|\Delta W^{(m)}(i,j)\|_2^2] = K(\eta \frac{\partial L}{\partial v(N)} \frac{n-m-1}{n(n-1)})^2 \sigma^2 / \binom{n-2}{m}$, where K is the dimension of the network parameter W.

Theorem 1 indicates that:

The strength of learning $I^{(m)}(i,j)$ is

proportional to
$$\frac{n-m-1}{n(n-1)} / \sqrt{\binom{n-2}{m}}$$

The strength of learning extremely low-order or extremely high-order interactions is much higher

The strength of learning middle-order interactions is much lower

Theoretically explaining the representation bottleneck

• The learning effects of the entire DNN can be decomposed into the sum of the learning effects of multi-order interactions.

$$\Delta W = -\eta \frac{\partial L}{\partial v(N)} \frac{\partial v(N)}{\partial W} = \Delta W_U + \sum_{m=0}^{n-2} \sum_{i,j \in N, i \neq j} \left[R^{(m)} \frac{\partial I^{(m)}(i,j)}{\partial W}, \right]$$

the learning effects of the entire DNN

the learning effects of $I^{(m)}(i,j)$

Theorem 1. (Proof in Appendix B) Assume $\mathbb{E}_{i,j,S}[\frac{\partial \Delta v(i,j,S)}{\partial W}] = \mathbf{0}$. Let σ^2 denote the variance of each dimension of $\frac{\partial \Delta v(i,j,S)}{\partial W}$. Then, we have $\mathbb{E}_{i,j}[\Delta W^{(m)}(i,j)] = \mathbf{0}$ and $\mathrm{Var}_{i,j}[\Delta W^{(m)}(i,j)] = \mathbf{1} \cdot (\eta \frac{\partial L}{\partial v(N)} \frac{n-m-1}{n(n-1)})^2 \sigma^2 / \binom{n-2}{m}$. Besides, $\mathbb{E}_{i,j}[\|\Delta W^{(m)}(i,j)\|_2^2] = K(\eta \frac{\partial L}{\partial v(N)} \frac{n-m-1}{n(n-1)})^2 \sigma^2 / \binom{n-2}{m}$, where K is the dimension of the network parameter W.

Theorem 1 indicates that:

The strength of learning $I^{(m)}(i,j)$ is

proportional to
$$\frac{n-m-1}{n(n-1)} / \sqrt{\binom{n-2}{m}}$$

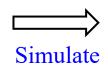
The strength of learning extremely low-order or extremely high-order interactions is much higher

The strength of learning middle-order interactions is much lower

Theoretically simulated distribution of interaction concepts vs. the true distribution of interaction concepts

Theoretically simulated distribution of interaction concepts of different orders

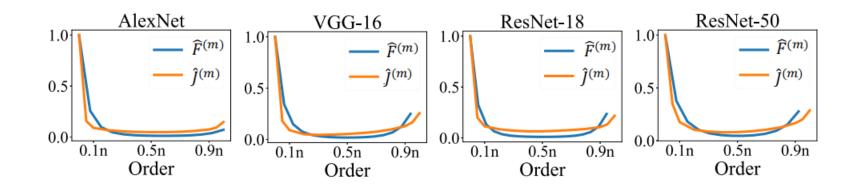
$$F^{(m)} = \frac{n - m - 1}{n(n - 1)} / \sqrt{\binom{n - 2}{m}}$$



True Distribution

of interaction concepts of different orders

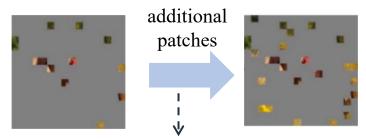
$$J^{(m)} = \frac{\mathbb{E}_{x \in \Omega} \left[\mathbb{E}_{i,j} \left[|I^{(m)}(i,j|x)| \right] \right]}{\mathbb{E}_{m'} \left[\mathbb{E}_{x \in \Omega} \left[\mathbb{E}_{i,j} \left[|I^{(m')}(i,j|x)| \right] \right] \right]}$$



The two distributions are well matched.

Human cognition vs. concepts encoded by a DNN

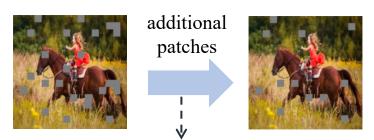
Given a few patches:



DNNs: extract strong interactions

Humans: extract little information

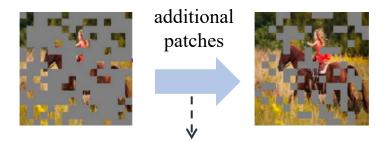
Given massive patches:



DNNs: extract strong interactions

Humans: extract little information

Given middle number of patches:



DNNs: extract weak interactions

Humans: extract much information

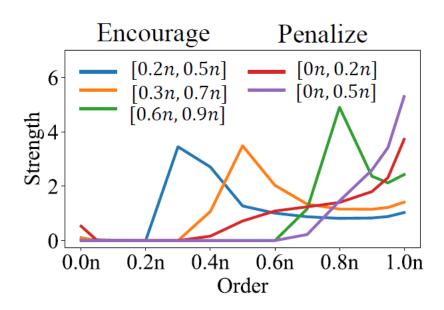
Breaking the representation bottleneck

We propose losses to encourage/penalize interactions of specific orders

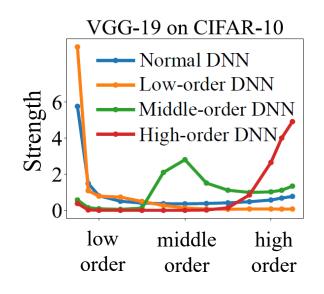
Loss = Loss_{classification} +
$$\lambda_1 L^+(r_1, r_2) + \lambda_2 L^-(r_1, r_2)$$

encourage interactions of penalize interactions of orders in the range $[r_1 n, r_2 n]$ orders in the range $[r_1 n, r_2 n]$

Experimental verification:



DNNs encoding interactions of different orders achieve similar accuracies



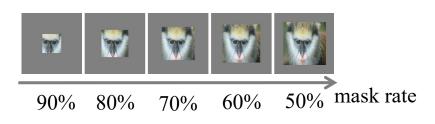
	CIFAR-10			Tiny-ImageNet		
Model	AlexNet	VGG16	VGG19	AlexNet	VGG16	VGG19
Normal training	88.52	90.50	90.61	56.00	56.16	52.56
Low interaction	86.97	89.99	89.74	58.68	55.60	55.04
Mid interaction	86.65	90.29	90.03	53.88	55.84	53.36
High interaction	88.68	90.84	90.79	56.12	55.36	53.28

High-order interactions are more vulnerable to adversarial attacks

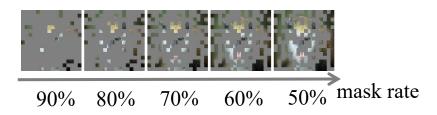
Normal DNN High-order DNN

Model	Normal	Penalize low-order
Wiodei	training	& boost high-order
MLP-5 on census	38.22	7.31
MLP-8 on census	39.33	2.02
MLP-5 on commer	27.01	22.00
MLP-8 on commer	25.92	20.58

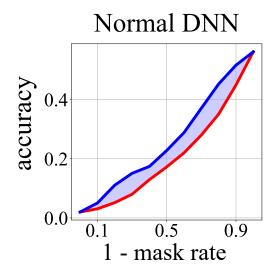
High-order interactions encode more structural information

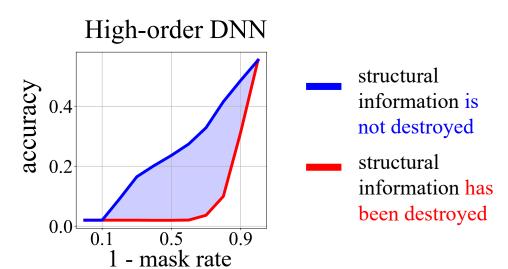


structural information is not destroyed



structural information has been destroyed





- We discover the representation bottleneck phenomenon of DNNs
- We theoretically explain the representation bottleneck phenomenon
- We propose losses to force DNNs to encode interactions of specific orders
- We **investigate the representation capacities** of DNNs mainly encoding low-order, middle-order, and high-order interactions