Multi-Stage Episodic Control for Strategic Exploration in Text Games **CLR 2022 (Spotlight)**

Jens Tuyls¹, Shunyu Yao¹, Sham Kakade², Karthik Narasimhan¹

¹Princeton University, ²Harvard University

Text Games - Motivation

Partially Observable Markov Decision Process (POMDP)

- Player receives observations and rewards, issues actions
- States and model are hidden

Key challenges

- 1. Sparse rewards
- 2. Large, dynamic action spaces (e.g. "Kill troll with sword")

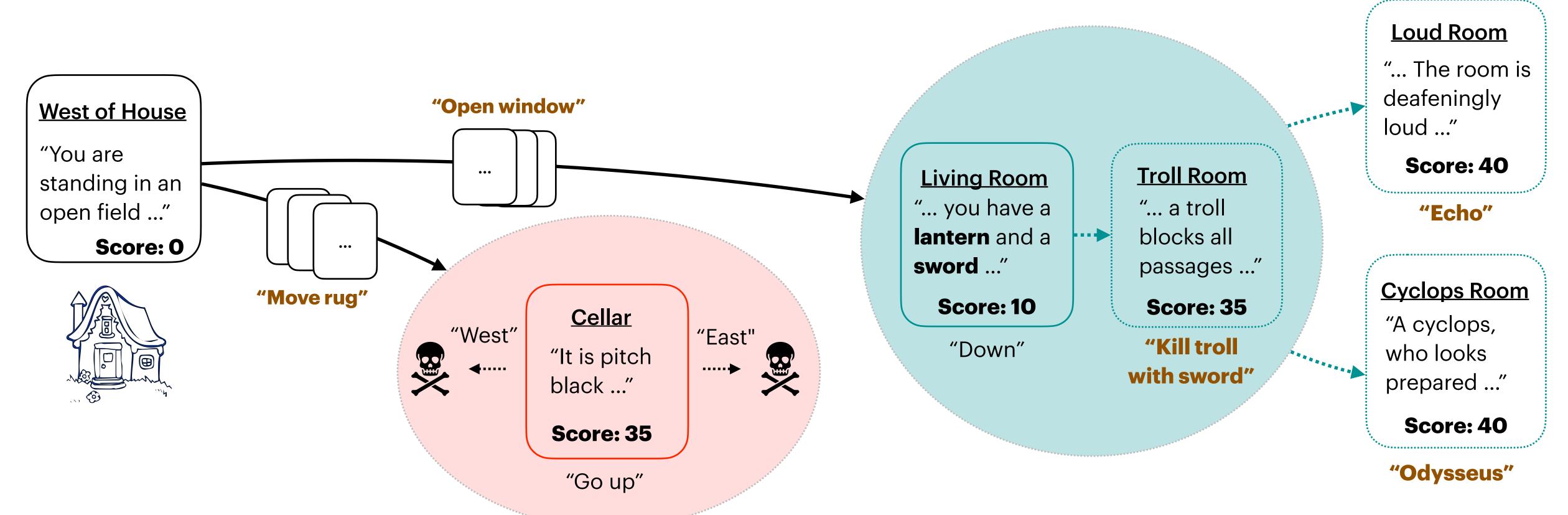
eXploit-Then-eXplore (XTX)

- 1. Exploitation phase: keeps track of a global "policy cover" of the game space
 - A. Similar to how a human player returns back to promising parts of the game
 - B. Allows quick learning from sparse rewards!

- 2. Exploration phase: performs strategic local exploration based on past knowledge and action uncertainty estimates
 - 1. Once at the frontier, human player cleverly explores the frontier locally
 - 2. Allows to strategically explore the large, dynamic action space

eXploit-Then-eXplore (XTX)

- 1. Exploitation phase: keeps track of a global "policy cover" of the game space
- 2. Exploration phase: performs strategic local exploration



XTX as a policy mixture

Action a, context c, observation o

$$\pi_{\lambda}(a \mid c, o) = \lambda \pi_{\text{inv-dy}}(a \mid o) + (1 - \lambda)\pi_{\text{il}}(a \mid c)$$

Exploration policy based on Q values and Inverse Dynamics (inv-dy) bonuses

Exploitation policy that returns the agent to the game frontier with Imitation Learning (il) on online trajectories

 λ determines trade-off

(Dynamically changed in episode)

eXploit-Then-eXplore - Episodic Rollouts

```
For every episode E:
 For every time t:
   If PHASE 1: \lambda = \frac{1}{2T}
   Elif PHASE 2: \lambda = 1
   Sample action from \pi_{\lambda}
   Update \pi_{inv-dy} with TD loss
 If n episodes passed:
   Update \pi_{i1} on new online
   trajectories \mathscr{B}
```

$$\pi_{\lambda} = \lambda \pi_{\text{inv-dy}} + (1 - \lambda) \pi_{\text{il}}$$

Evaluation & Baselines

Evaluate on 12 human-created games from Jericho (Hausknecht et al., 2020)

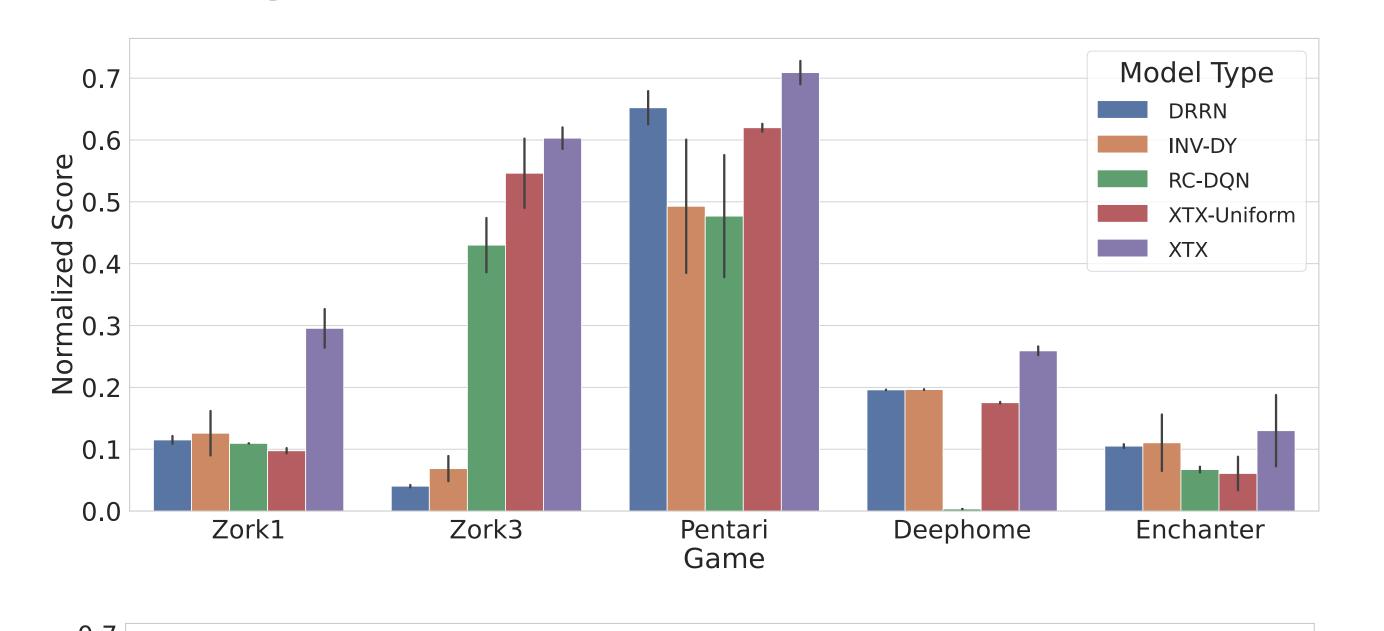
- Variety of challenges such as darkness, inventory management, etc.
- Deterministic and stochastic setting (observation + transition randomness)

Baselines

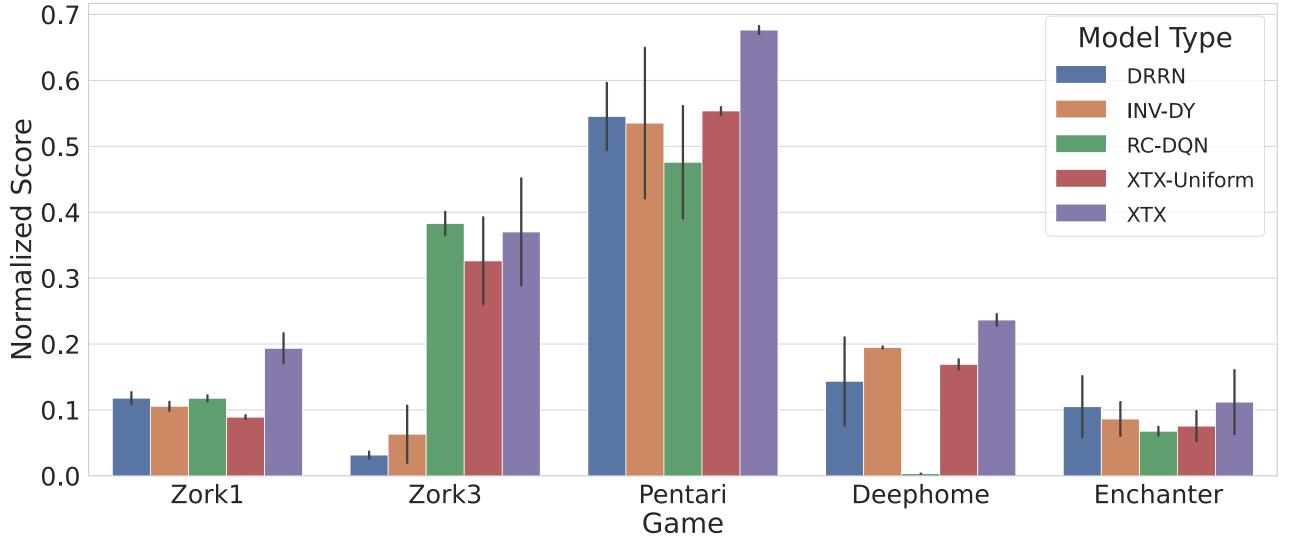
- DRRN (He et al., 2016)
- INV-DY (Yao et al., 2021)
- RC-DQN (Guo et al., 2020)
- XTX-Uniform (~Go-Explore (Ecoffet et al., 2021))

Results - Avg. Scores

Normalized score = raw games score/max score



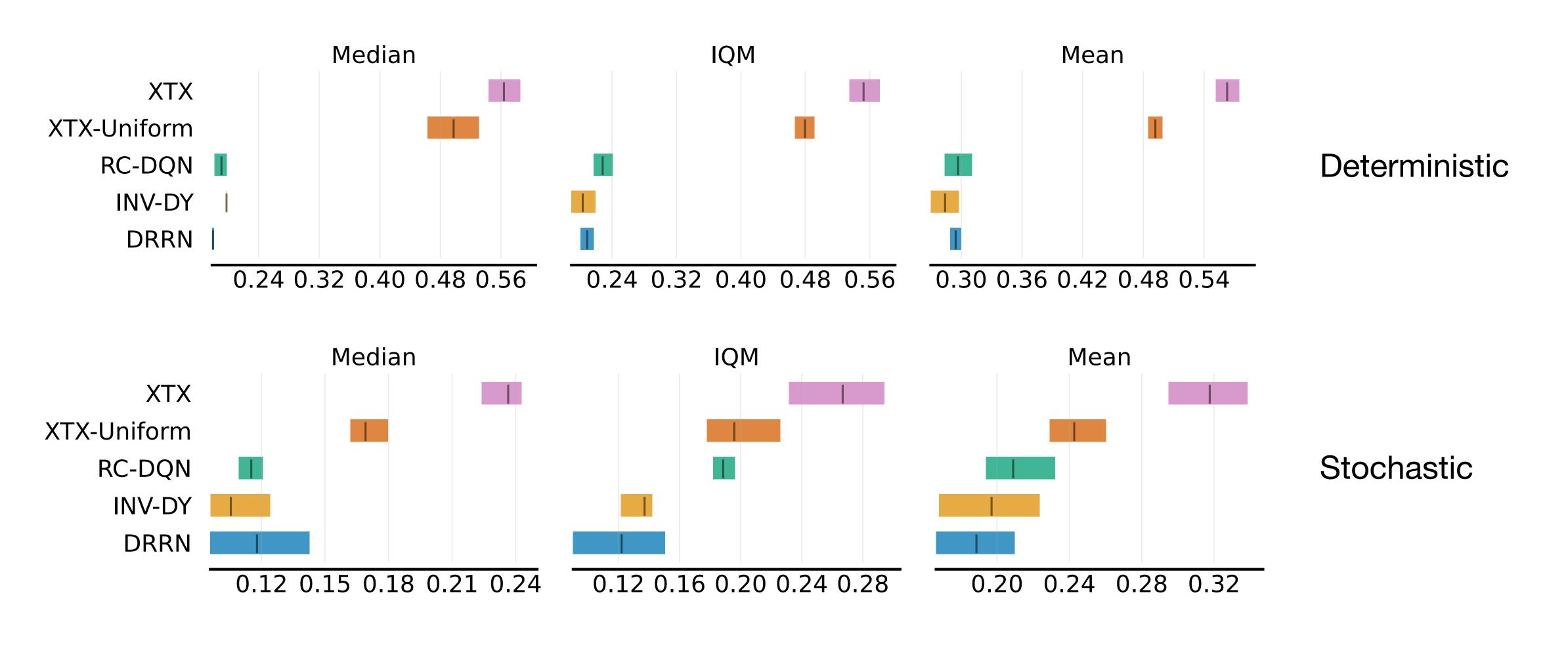
Deterministic



Stochastic

Results - Summary

Normalized score = raw games score/max score



Normalized Score

(Agarwal et al., 2021)

Conclusion

We propose exploit-Then-explore (XTX) to solve key challenges in text games:

(1) sparse rewards and (2) large, dynamic action spaces

XTX

- 1. Explicitly separates episodic rollouts into exploitation and exploration
- Keeps track of a global policy cover with strategic local exploration at the frontier
- ✓ SOTA on 12/12 deterministic and 4/5 stochastic games in Jericho
- Overall significantly outperforms prior methods
- More than 2x improvement on famous Zork1!

Thank you.