FlexConv: Continuous Kernel Convolutions With Differentiable Kernel Sizes

David W. Romero*1 Robert-Jan Bruintjes*2

* equal contribution

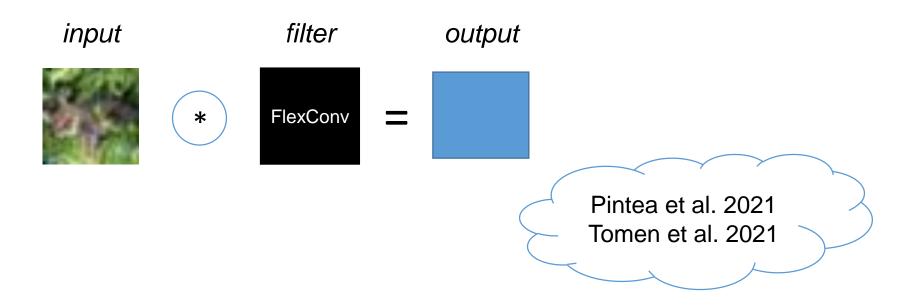
Jakub M. Tomczak¹

Erik J. Bekkers³

Mark Hoogendoorn¹

Jan van Gemert²

Abstract


FlexConv replaces convolutions

Contributions

- 1. Learns kernel size
- 2. High bandwidth kernel
- 3. Adaptable to data resolution

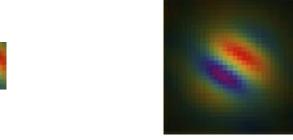
Method

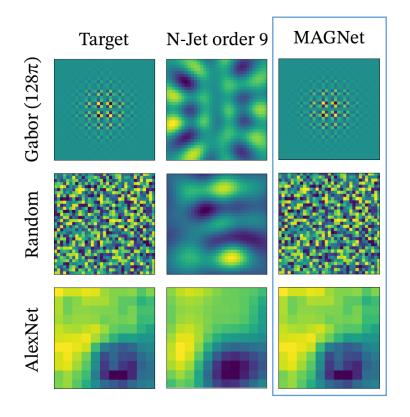
Learning kernel size

Silvia L Pintea, Nergis Tomen, Stanley F Goes, Marco Loog, and Jan C van Gemert. Resolution learning in deep convolutional networks using scale-space theory. arXiv preprint arXiv:2106.03412, 2021.

Nergis Tomen, Silvia-Laura Pintea, and Jan Van Gemert. Deep continuous networks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10324–10335. PMLR, 18–24 Jul 2021.

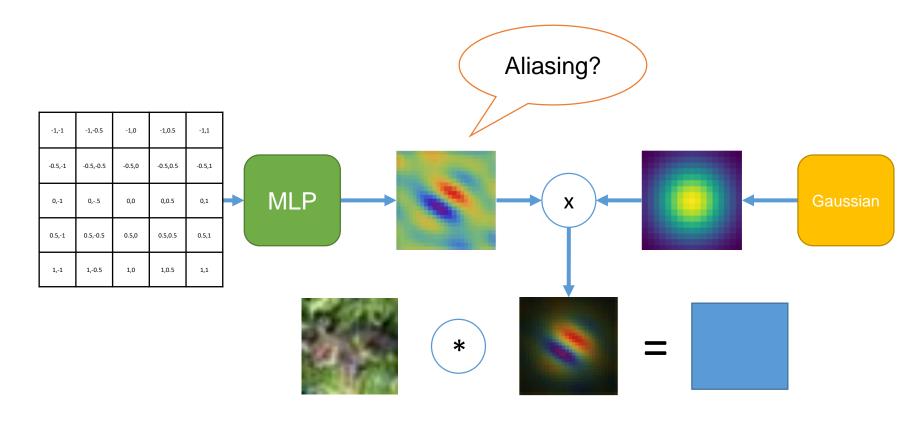
Method FlexConv Fathony et al. 2021 Sitzmann et al. 2020 0 MLP

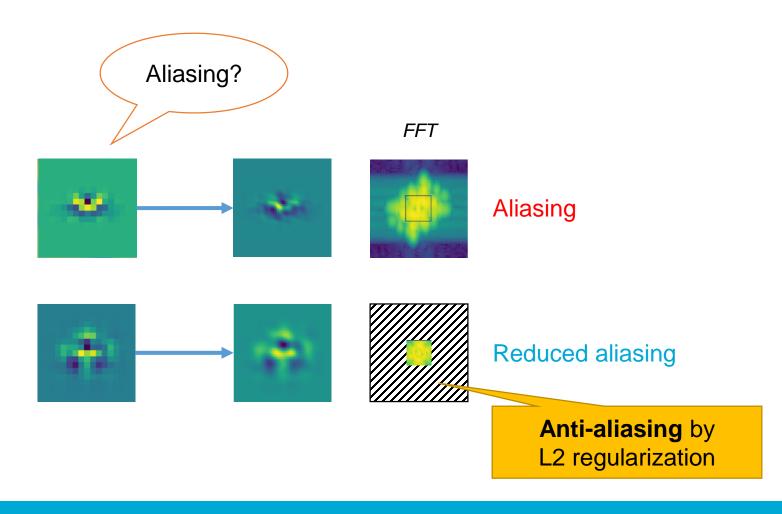

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks. In International Conference on Learning Representations, 2021.


Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural representations with periodic activation functions. Advances in Neural Information Processing Systems, 33, 2020

Contribution

High bandwidth kernels


Related works FlexConv


Contribution

Adapting resolution

Contribution

Adapting resolution

Results

Upscaled image classification

CIZE	CIFAR-10 Acc.		
SIZE	16 px	Δ_{16px} 32 px	
0.66м	85.8 ± 0.2	-31.6 ± 1.3	
0.67м	86.4 ± 0.4	-34.4 ± 14.3	
0.67M	86.5 ± 0.1	-3.8 ± 2.0 -3.3 ± 0.3	
	0.67м	SIZE 16 px 0.66M 85.8 ± 0.2 0.67M 86.4 ± 0.4 0.67M 86.5 ± 0.1	

Sequence classification

MODEL	SIZE	CT	SC	SC_RAW
GRU-ODE	89K	96.2	44.8	~10.0
GRU- Δt	89K	97.8	20.0	~10.0
GRU-D	89K	95.9	23.9	~10.0
ODE-RNN	89K	97.1	93.2	~10.0
NCDE	89K	98.8	88.5	~10.0
FlexTCN-2	105sk	99.53	97.10	88.03
FlexTCN-4	239K	99.53	97.73	90.45
FlexTCN-6	373K	99.53	97.67	91.73

Image classification

Model	SIZE	CIFAR-10 Acc.	TIME (SEC/EPOCH)
CIFARResNet-44	0.66м	92.9*†	22
DCN- σ^{ji}	0.47M	$89.7 \pm 0.3*$	-
N-Jet-CIFARResNet32	0.52M	$92.3 \pm 0.3*$	-
N-Jet-ALLCNN	1.07M	$92.5 \pm 0.1*$	-
FlexNet-16	0.67м	92.2 ± 0.1	127

FlexConv: Continuous Kernel Convolutions With Differentiable Kernel Sizes

David W. Romero*1 Robert-Jan Bruintjes*2

* equal contribution

Jakub M. Tomczak¹

Erik J. Bekkers³

Mark Hoogendoorn¹

Jan van Gemert²

