

Carnegie Mellon University
School of Computer Science

Variational Autoencoders in the Presence of Low-Dimensional Data: Landscape and Implicit Bias

Frederic Koehler*1, Viraj Mehta*2, Chenghui Zhou*3, Andrej Risteski³

 $^1{\rm Simons~Institute},$ UC Berkeley $^2{\rm Robotics~Institute},$ Carnegie Mellon University $^3{\rm Machine~Learning~Department},$ Carnegie Mellon University

Motivation

- VAE has common applications in image and language data;
 - e.g. Oord et al., 2017; Razavi et al., 2019; Vahdat & Kautz, 2020, ...

- These data is hypothesized to be supported on a lower-dimensional manifold
 - Goodfellow et al., 2016

- Prior work shed insights into VAE in lower-dimensional data setting
 - Dai & Wipf, 2019

Background

Dai & Wipf proposed a 2-stage VAE based on the following hypothesis:

• In standard VAE training with tunable decoder variance, the decoder will learn the correct manifold, but not the correct density under lower-dimensional data setting.

The proposed method has good performance, but is the hypothesis true?

Vanila VAE

2-stage VAE

Our findings

Through empirical and theoretic study, we show that:

• In linear case, the VAE recovers the support of the manifold by an implicit bias of training dynamic, but the density over the manifold is not recovered

• In nonlinear case, neither the manifold nor the density is recovered

Problem Setup

Synthetic data generation from linear and nonlinear manifolds:

x = f(z) and $z \sim \mathcal{N}(0, I_{r^*})$ and $f(\cdot)$ could be linear or nonlinear

Why do we use synthetic dataset?

- The ground-truth distribution is accessible
- The intrinsic dimension and ambient dimension are known

Lower-Dimensional Linear Data

Empirical Results:

Informal Theorem:

Data Generation:

$$x = (Az, \overrightarrow{0})$$

Observations:

- 1. The rank of the decoder matches the intrinsic dimension;
- 2. The model does not recover the correct density over the manifold.

To achieve the asymptotic global minima, the learnt parameter \tilde{A} can have higher or equal rank to A.

However....

The gradient flow run on the VAE loss has an *implicit bias* to converge to the lowest-rank global optima

• i.e. recovering the correct subspace

Lower-Dimensional Nonlinear Data

Empirical Results:

Data Generation:

$$x = (z, \sigma(\langle a^*, z \rangle), \overrightarrow{0})$$

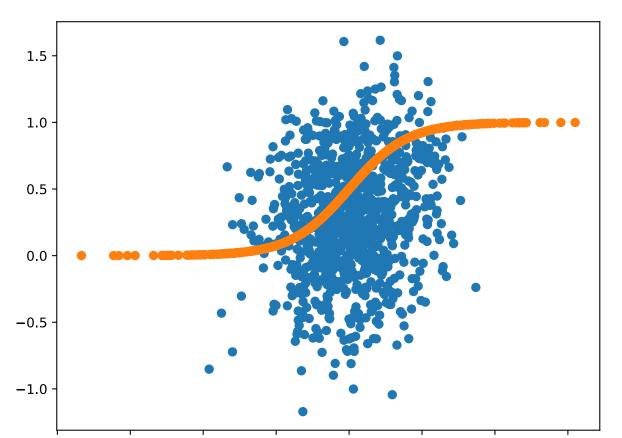
Observations:

Neither the manifold

is recovered.

Informal Theorem:

The learnt decoder strictly contains the ground-truth manifold.



$$x$$
-axis: $\langle a^*, x_{:r^*} \rangle$;

y-axis:
$$x_{r^*+1}$$

ground-truth data *x* in orange

generated data \tilde{x} in blue

Thank You Please Visit Poster No. 6885