Causal contextual bandits with targeted interventions

Chandrasekar Subramanian, Balaraman Ravindran

Contextual bandits

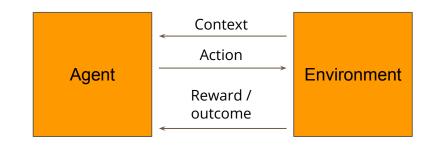
Contextual bandit agents learn **policies** (maps from a state space to an action space)

• • •

... by repeatedly **interacting*** with an environment ...

... in order to minimize some notion of **reward/regret**.

They naturally model **decision making** scenarios (e.g. recommendation systems, marketing campaign allocation, etc.)



* Though offline settings are also an active field of research.

Our framework

We propose a **new contextual bandit framework** where

- The agent is able to target actions on specific subsets of the population ("targeted interventions")
- 2. The agent has access to **causal side-information** in the form of causal graphs

Why is this useful?

As an example, consider software product experimentation

- Product experiments can often be targeted on specific subgroups of users (e.g. iOS users) → "targeted interventions"
- There might be information* on causal relationships between variables (e.g. emailopen causes click) → "causal side-information"

We would want the learning agent to utilize these extra levers.

How do we approach this?

Targeted interventions fundamentally change the set of options that the agent has in every round – **necessitating new techniques**. Further, leveraging causal side information in contextual bandit settings hasn't been studied before.

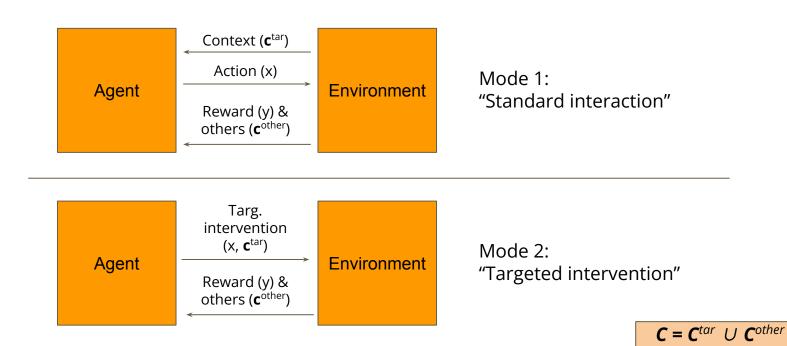
Our contributions include

- New formalism for contextual bandits that captures these intricacies
- New algorithm based on a novel entropy-like measure.
- Theoretical bound on regret.
- **Experiments** showing that our algorithm outperforms various baselines

Framework

The agent has a budget of T training rounds; evaluated in (T+1)th round (simple regret).

In every training round, the agent can interact in one of 2 modes.



Solution approach

The agent faces a tradeoff in each round

- In the standard interaction mode, the agent can learn about the natural distribution of contexts
- In the targeted intervention mode: the agent can learn about rewards given action for a specific subspace of contexts

In the targeted intervention mode, it further faces two choices: choosing to learn about already explored contexts vs. new contexts

What mode to choose in each round? And what intervention to perform?

Unc measure

The Unc measure provides a measure of the expected effect of agent's knowledge of $\mathbb{E}[Y|do(x'),\mathbf{c}^{tar'}]$ IF a targeted intervention (x,\mathbf{c}^{tar}) is performed.

$$\mathsf{Ent}(\mathbb{P}(V|\mathbf{pa}_V)) \triangleq -\sum_i \left[\frac{\theta_{V|\mathbf{pa}_V}[i]}{\sum_j \theta_{V|\mathbf{pa}_V}[j]} \ln \left(\frac{\theta_{V|\mathbf{pa}_V}[i]}{\sum_j \theta_{V|\mathbf{pa}_V}[j]} \right) \right]$$

$$\begin{aligned} \mathsf{Unc}\left(\mathbb{E}[Y|do(x'),\mathbf{c}^{tar\prime}]\big|x,\mathbf{c}^{tar}\right) &\triangleq \sum_{\mathbf{c}^{other\prime} \in \mathsf{val}(\mathcal{C}^{other})} \left[\sum_{V \in \mathcal{C}^{other}} \mathsf{Ent}(\mathbb{P}(V|\mathbf{c}'\langle PA_V\rangle)|x,\mathbf{c}^{tar}) + \right. \\ &\left. \mathsf{Ent}(\mathbb{P}(Y|x',\mathbf{c}'\langle PA_Y\rangle)|x,\mathbf{c}^{tar}) \right] \cdot \hat{\mathbb{P}}(\mathbf{c}') \cdot \hat{\mathbb{E}}[Y|\mathbf{c}',do(x')] \end{aligned}$$

Algorithm – high-level idea*

Phase 1 (αT rounds): random exploration

- Perform standard interaction with randomly chosen actions
- Update beliefs about CPDs of graph G

Phase 2 ((1- α)*T* rounds): allocation of targeted intervention samples

- Find (x, c^{tar}) that minimizes aggregate value of **Unc** calculated using current beliefs
- Perform targeted intervention (x, c^{tar})
- Update beliefs about CPDs of graph G

Return: final beliefs

Evaluation: given test context c^{tar} chosen from natural distribution, return x that has highest expectation (based on learned beliefs) of reward

* Please refer to the paper for the full algorithm

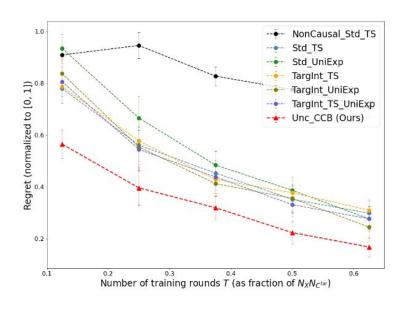
Regret bound

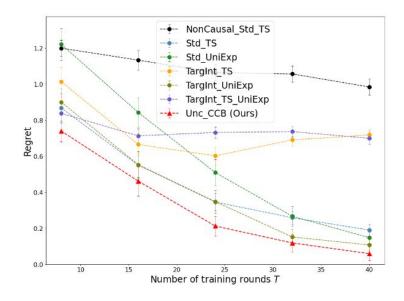
We bound regret to a provide theoretical guard on regret.

Theorem 3.1. For any $0 < \delta < 1$, with probability $\geq 1 - \delta$,

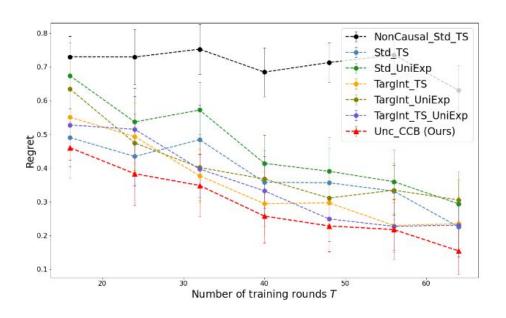
$$Regret \leq 3\mathbb{E}_{\boldsymbol{p}\boldsymbol{a}_{Y},\boldsymbol{c}^{tar}}\left(\sqrt{\left[\frac{2}{\frac{\alpha T}{N_{X}}\mathbb{P}(\boldsymbol{p}\boldsymbol{a}_{Y},\boldsymbol{c}^{tar}) - \epsilon_{X,PA_{Y}}^{T}}\right]\ln\left(\frac{2N_{X}(N_{\mathcal{C}} + |\mathcal{C}|)}{\delta}\right)}\right) + 3\sum_{C \in \mathcal{C}^{other}}\mathbb{E}_{\boldsymbol{p}\boldsymbol{a}_{C},\boldsymbol{c}^{tar}}\left(\sqrt{\left[\frac{2}{\alpha T\mathbb{P}(\boldsymbol{p}\boldsymbol{a}_{C},\boldsymbol{c}^{tar}) - \epsilon_{PA_{C}}^{T}}\right]\ln\left(\frac{2(N_{\mathcal{C}} + |\mathcal{C}|)}{\delta}\right)}\right)$$
(1)

Experiments – purely synthetic





Experiments – real-world inspired



Thank you