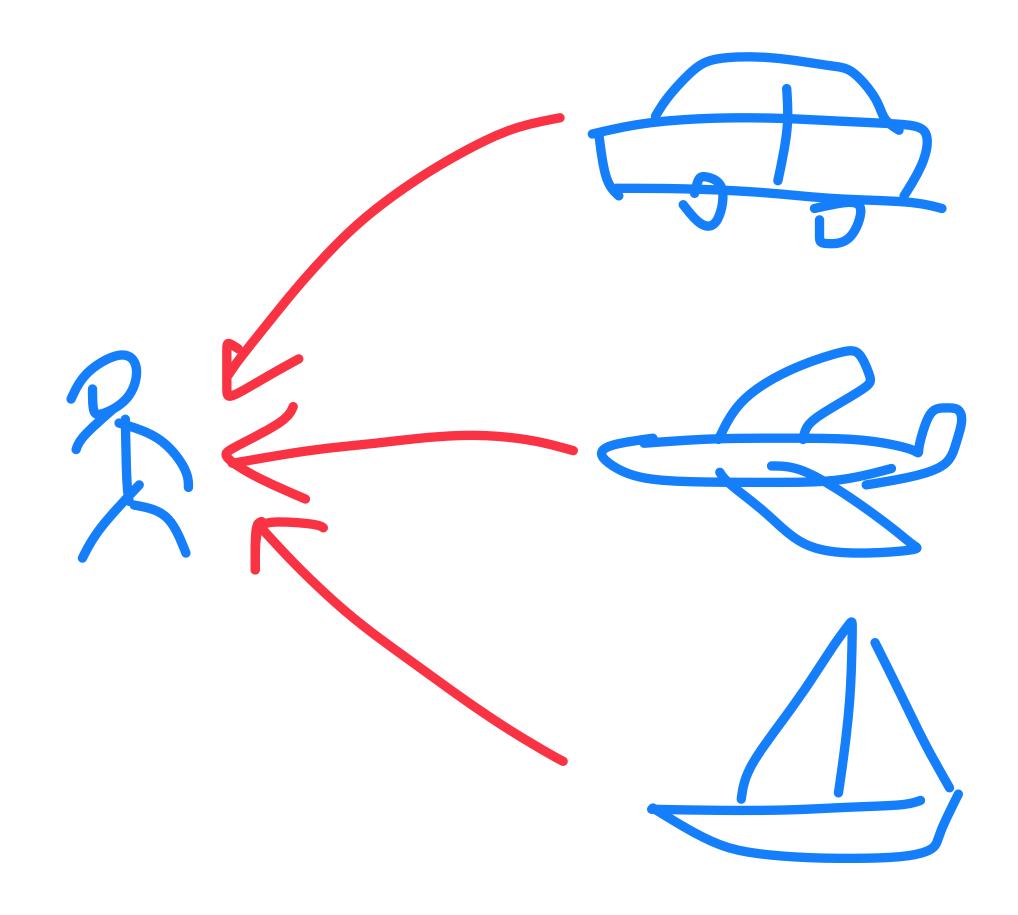


Bridging Recommendation and Marketing via Recurrent Intensity Modeling

Yifei Ma, Ge Liu, Anoop Deoras AWS AI Labs

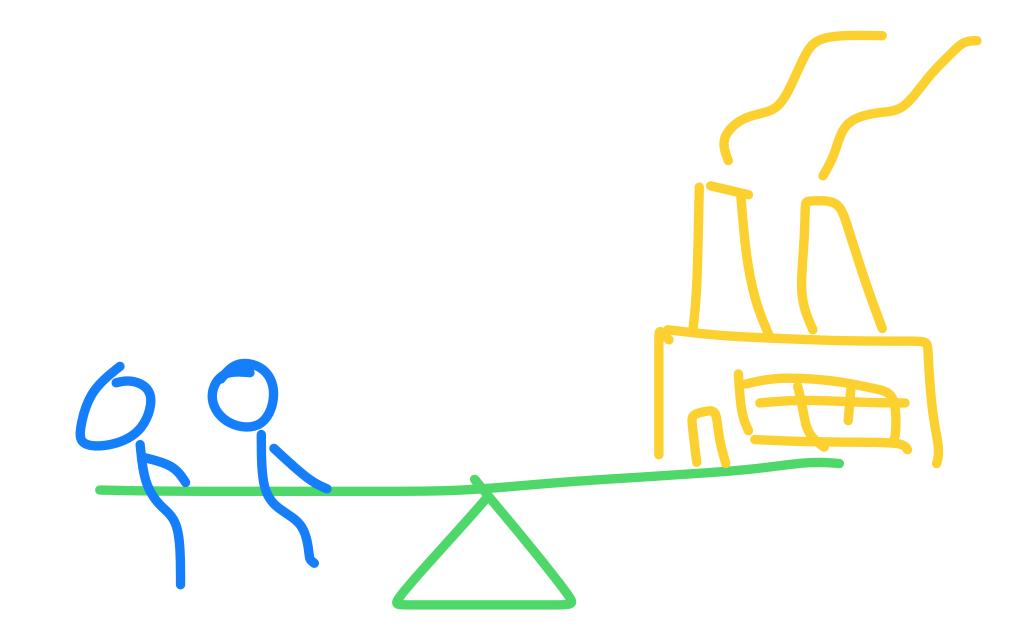
Popularity Bias Effects in User-Centric Recommender Systems

- Popular items often get exposed to more users, who in turn drive the popularity of the popular items
- Must design mechanisms to explore the underexposed "cold-start" items
- Practical solution: offer every item a free marketing budget for exploration
- Question: how to integrate marketing into an existing recommender system?



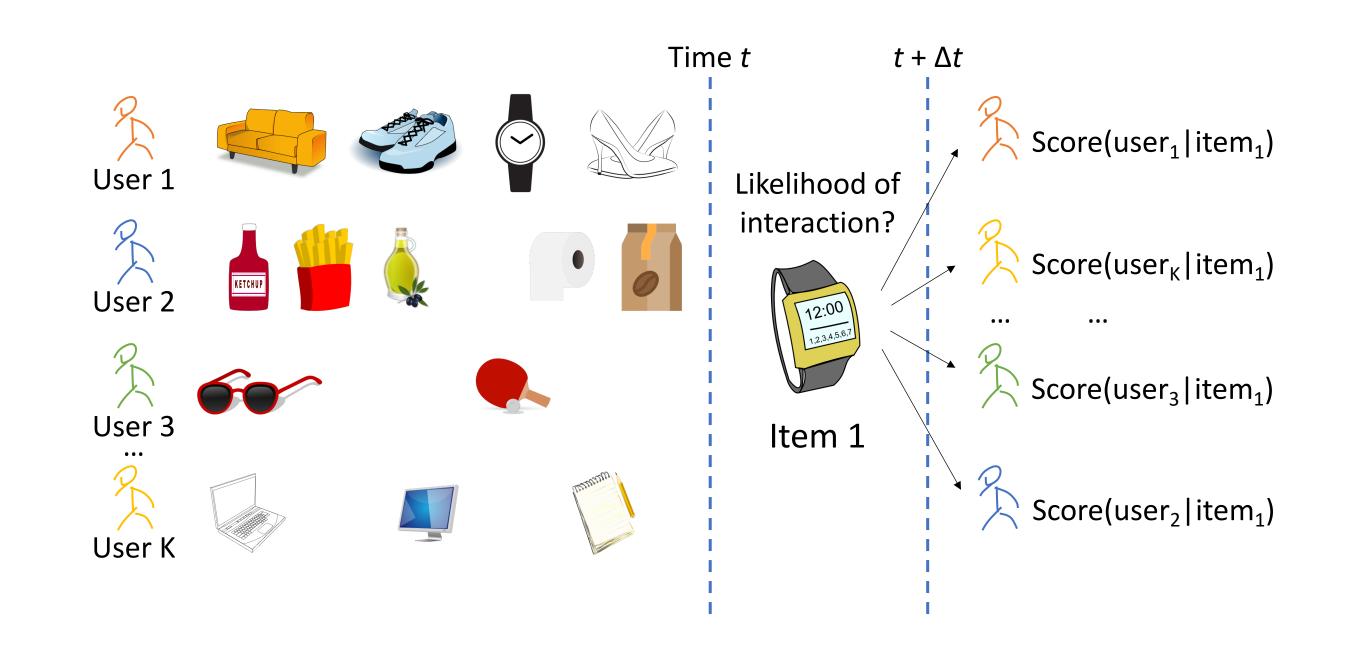
Main Contributions of Our Work

- UserRec: recommend users for item marketers
- OnInMtch: match multiple users and items in an online real-time environment
- Show results with improved item diversity with least compromises in recommendation relevance



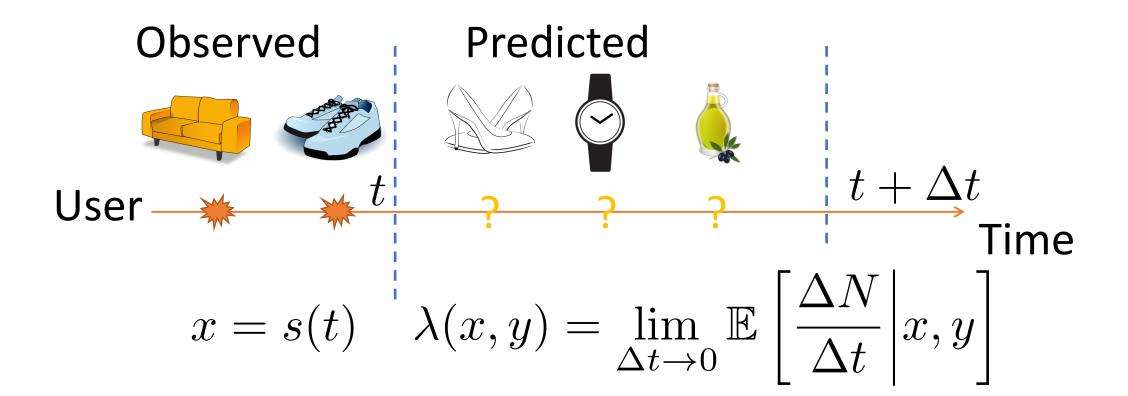
UserRec Generalizes Related-Product Advertising

- Place advertisements on related items, such as frequently co-viewed products
 - Increase exposure to users with potential interests based on a single event in their browsing histories
- UserRec considers the users' full-history information (time-series data)
- Challenge: the time series data cannot be compared just like random variables
 - E.g., compare between a matching but less active user and an active but less matching user?
 - Not feasible with probability density estimation based on the users' hidden-state variables learned for next-item recommendation



Introducing Recurrent Intensity Modeling (RIM)

- Key observation: find users who are most likely to interact with the given item in the next period of time
- Formally defined by the intensity parameter $\lambda(x, y)$ in Temporal Point Processes, where x is a user-state and y is an item:

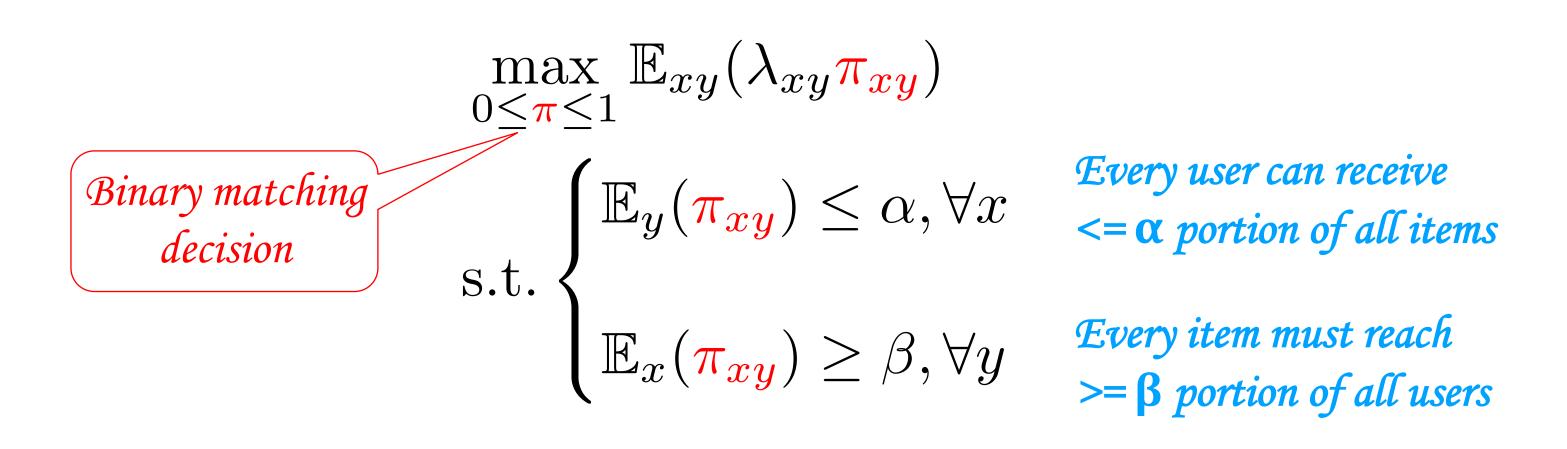


- MTPP Decomposition $\lambda(x, y) = \lambda(x) p(y \mid x)$, similar to Bayes' rule
 - Reuse RNN/Transformer models from recommender systems for p(y | x) for simplicity

Three Marketing Scenarios

	UserRec	Offline Match	Online Match
Pick top users among current users for one marketed item	Y	Y	Y
Market for multiple items at the same time		Y	Y
Set minimal-exposure constraints for every item for exploration, combined with max-capacity constraints for every user		Y	Y
Responsive marketing when a user appears just like RecSys			Y
Distribute marketing materials in a future period of time			Y

Constrained Optimization and Dual Algorithm

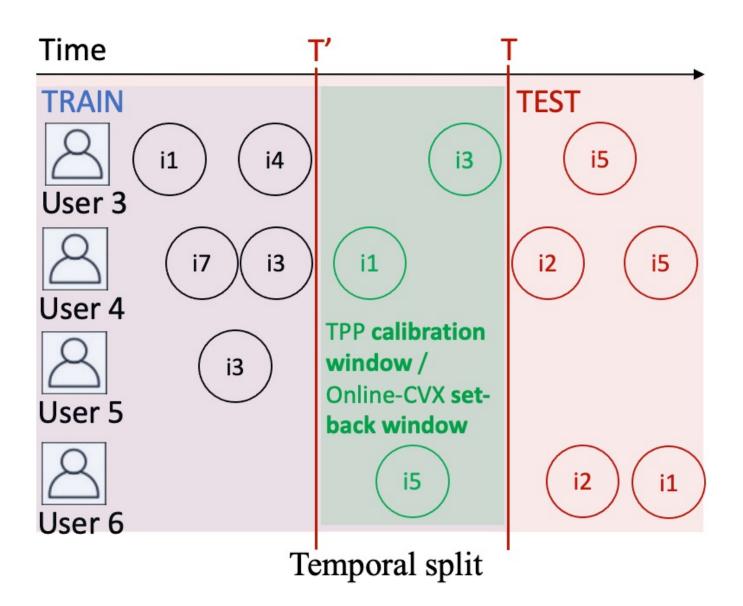


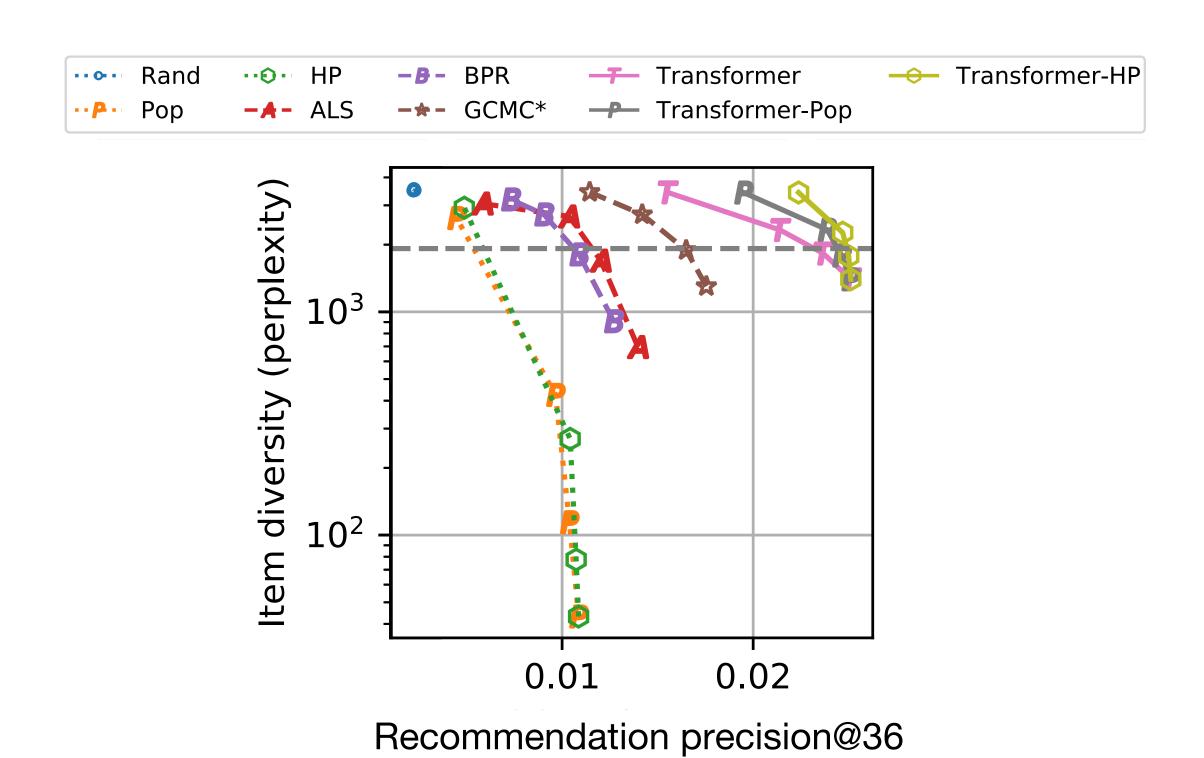
Expectations over a distribution of users $x \in \mathcal{X}$ and a finite set of items $y \in \mathcal{Y}$

- Let v_v be the dual variable for item y, learned from historical data
- When a user appears online with a random state x,
 - return top items based on the modified scores $\{\lambda_{xy} v_y : y \in \mathcal{Y}\}$
- $v_v \le 0$ corresponds to positive biases for cold-start exploration

Featured OnInMtch Experiment

- Take user-item interaction data from MovieLens* dataset
- Pick test-start time T and train RIMs from past data
- Define item min-exposure constraint 0<β<1
- Learn Dual planner based on user-state distribution at T' to simulate OnInMtch at T
- Vary β to generate a trade-off curve between relevance & diversity





- Transformer-HP (a variant of RIMs) holds the Pareto front
- GitHub repository: https://github.com/awslabs/recurrent-intensity-model-experiments

Conclusions

- Recommender systems are often user-centric, but they also consider item exploration as a key challenge
- We borrow ideas from marketing to meet the exploration challenge
 - RIM extends sequential recommendation models for personalized marketing
 - Dual modifies rec scores to distribute items across user & time space
- Show favorable relevance-diversity trade-offs using back-test time periods
- Future work: close the loop with human feedback to study the long-term exploration effects after multiple rounds of matching iterations