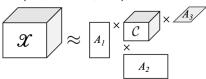
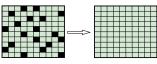
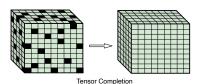

Multi-Mode Deep Matrix and Tensor Factorization

Jicong Fan


The Chinese University of Hong Kong (Shenzhen)

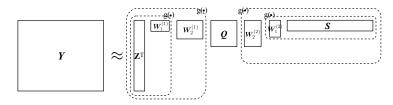
Matrix and Tensor Factorization


Matrix factorization

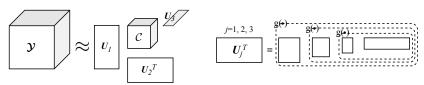

Tensor factorization (CP, Tucker, etc)

Matrix and tensor completion

Deep Matrix Factorization (DMF)

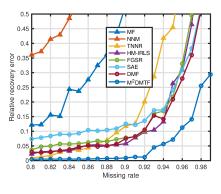

A general formulation of DMF

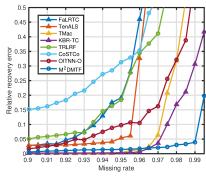
$$\mathbf{X} \approx g_1(\mathbf{A}_1 g_2(\mathbf{A}_2 \cdots g_{L-1}(\mathbf{A}_{L-1} \mathbf{A}_L) \cdots))$$
 (1)


- $\{g_l\}$ are activation functions
- Deep Linear Matrix Factorization: linear $\{g_l\}$ (Trigeorgis et al., 2016; Zhao et al., 2017; Arora et al., 2019)
- Deep Nonlinear Matrix Factorization: nonlinear $\{g_I\}$ (Xue et al., 2017; Wang et al., 2017; Fan & Cheng, 2018)
- DMF methods outperform shallow MF in many applications
- Limitations
 - DMF does not fully explore the nonlinearity of data
 - Deep nonlinear MF has no theoretical guarantee

Multi-Mode Deep Matrix and Tensor Factorization (M²DMTF)

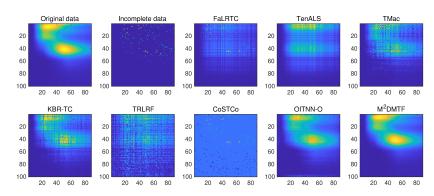
Two-mode matrix factorization


Multi-mode tensor factorization



- Theoretical results
 - M²DMTF have tighter generalization error bounds than classical MF, DMF, and TF in matrix and tensor completion

Numerical Results


Matrix and tensor completion on synthetic data

Numerical Results

Visualization of one slice of a real tensor (missing rate=0.97)

