

Sparse DETR:

Efficient End-to-End Object Detection with Learnable Sparsity

Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, Saehoon Kim

Kakao Brain

*equal contribution

• Deformable DETR introduces **deformable attention** which **reduces computation cost** from **quadratic to linear** complexity

• Deformable DETR introduces **deformable attention** which **reduces computation cost** from **quadratic to linear** complexity

• Using **the multi-scale features** as an encoder input **increases** the **number of tokens** to be processed by about **20 times**

• Using **the multi-scale features** as an encoder input **increases** the **number of tokens** to be processed by about **20 times**

							Detection		
Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
DETR	62.4	44.2	20.5	45.8	61.1	41M	86G	28	
Deformable DETR	43.8	62.6	47.7	26.4	47.1	58.0	40M	173G	19
	r.								
20		Def. Self-At	tn.	Self-A	Attn.				
× · · · ·	•	→					cls., r	♥ eg. loss	
ICLR							kak	aobr	ain

Characteristic of Images for Object Detection

• On average, **only 30%** of the entire image is the foreground pixel.

MS COCO dataset

Characteristic of Images for Object Detection

• On average, **only 30%** of the entire image is the foreground pixel.

MS COCO dataset

• Do we need to compute **the entire token** in the encoder block?

Architecture

Architecture

Architecture

encoder complexity	N: # of tokens, M: # of sampling points (4) S: # of sampled tokens in encoder (0.1N)

		Keeping	Top-k									
Method	Epochs	ratio (ρ)	& BBR	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
ResNet-50 backbon	e:											
F-RCNN-FPN [†]	109	N/A		42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	26
DETR^\dagger	500	100%		42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	28
DETR-DC5 ^{\dagger}	500	100%		43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	12

		Keeping	Top-k									
Method	Epochs	ratio (ρ)	& BBR	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
ResNet-50 backbon	e:											
F-RCNN-FPN [†]	109	N/A		42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	26
DETR^\dagger	500	100%		42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	28
DETR-DC5 ^{\dagger}	500	100%		43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	12
DDD DETD	500	33%		41.1	61.5	43.7	20.8	44.6	60.0	-	-	-
FIIF-DETK ³	500	50%		41.8	62.1	44.4	21.2	45.3	60.8	-	-	-
DDD DETP DC5	500	33%		42.7	62.8	45.1	22.4	46.2	60	-	-	-
FIIF-DETK-DC3*	500	50%		43.1	63.4	45.3	22.7	46.5	61.1	-	-	-

		Keeping	Top-k									
Method	Epochs	ratio (ρ)	& BBR	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
ResNet-50 backbon	e:											
F-RCNN-FPN [†]	109	N/A		42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	26
DETR^\dagger	500	100%		42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	28
DETR-DC5 ^{\dagger}	500	100%		43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	12
DDD DETD	500	33%		41.1	61.5	43.7	20.8	44.6	60.0	-	-	-
LIIL-DELK,	500	50%		41.8	62.1	44.4	21.2	45.3	60.8	-	-	-
DDD DETP DC5	500	33%		42.7	62.8	45.1	22.4	46.2	60	-		-
FIIF-DETK-DCJ	500	50%		43.1	63.4	45.3	22.7	46.5	61.1	-	-	-
Deformable DETR	50	100%		43.9	62.8	47.8	26.1	47.4	58.0	40M	173G	19.1
	50	100%	\checkmark	46.0	65.2	49.8	28.2	49.1	61.0	41M	177G	18.2

- 77

		Keeping	Top-k									
Method	Epochs	ratio (ρ)	& BBR	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
ResNet-50 backbon	e:											
F-RCNN-FPN [†]	109	N/A		42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	26
DETR^\dagger	500	100%		42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	28
DETR-DC5 ^{\dagger}	500	100%		43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	12
DDD DETD	500	33%		41.1	61.5	43.7	20.8	44.6	60.0	-		-
LIIL-DELK,	500	50%		41.8	62.1	44.4	21.2	45.3	60.8	-	-	-
DDD DETP DC5	500	33%		42.7	62.8	45.1	22.4	46.2	60	-		-
FIIF-DETK-DCJ	500	50%		43.1	63.4	45.3	22.7	46.5	61.1	-	-	-
Deformable DETR	50	100%		43.9	62.8	47.8	26.1	47.4	58.0	40M	173G	19.1
Deformable-DETK	50	100%	\checkmark	46.0	65.2	49.8	28.2	49.1	61.0	41M	177G	18.2
	50	10%	\checkmark	45.3	65.8	49.3	28.4	48.3	60.1	41M	105G	25.3
	50	20%	\checkmark	45.6	65.8	49.6	28.5	48.6	60.4	41M	113G	24.8
Sparse-DETR	50	30%	\checkmark	46.0	65.9	49.7	29.1	49.1	60.6	41M	121G	23.2
			AP					G	FLOPs		FPS	
			0.0					-56	(-329	%)	+5.0 (2	2%)

		Keeping	Top-k									
Method	Epochs	ratio (ρ)	& BBR	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
ResNet-50 backbon												
F-RCNN-FPN [†]	109	N/A		42.0	62.1	45.5	26.6	45.4	53.4	42M	180G	26
DETR^\dagger	500	100%		42.0	62.4	44.2	20.5	45.8	61.1	41M	86G	28
DETR-DC5 ^{\dagger}	500	100%		43.3	63.1	45.9	22.5	47.3	61.1	41M	187G	12
DDD DETD [‡]	500	33%		41.1	61.5	43.7	20.8	44.6	60.0	-		-
FIIF-DETK'	500	50%		41.8	62.1	44.4	21.2	45.3	60.8	-	-	-
DDD DETP DC5	500	33%		42.7	62.8	45.1	22.4	46.2	60	-	-	-
FIIF-DETK-DCJ	500	50%		43.1	63.4	45.3	22.7	46.5	61.1	-	-	-
Deformable DETR	50	100%		43.9	62.8	47.8	26.1	47.4	58.0	40M	173G	19.1
Deformable-DETK	50	100%	\checkmark	46.0	65.2	49.8	28.2	49.1	61.0	41M	177G	18.2
	50	10%	\checkmark	45.3	65.8	49.3	28.4	48.3	60.1	41M	105G	25.3
	50	20%	\checkmark	45.6	65.8	49.6	28.5	48.6	60.4	41M	113G	24.8
Sparse-DETR	50	30%	\checkmark	46.0	65.9	49.7	29.1	49.1	60.6	41M	121G	23.2
	50	40%	\checkmark	46.2	66.0	50.3	28.7	49.0	61.4	41M	128G	21.8
	50	50%	\checkmark	46.3	66.0	50.1	29.0	49.5	60.8	41M	136G	20.5

AP	
+0.3	

GFLOPs	FPS
-41 (-23%)	+2.3 (13%)

Experiments: Swin-T

s FPS
26.8
15.9
15.4
21.2
S
38%)
s 3

Experiments: Swin-T

		Keeping	Top-k									
Method	Epochs	ratio (ρ)	& BBR	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	params	FLOPs	FPS
Swin-T backbone:												
DETR	500	100%		45.4	66.2	48.1	22.9	49.5	65.9	45M	92G	26.8
Deformable DETP	50	100%		45.7	65.3	49.9	26.9	49.4	61.2	40M	180G	15.9
Deformable-DETK	50	100%	\checkmark	48.0	68.0	52.0	30.3	51.4	63.7	41M	185G	15.4
	50	10%	\checkmark	48.2	69.2	52.3	29.8	51.2	64.5	41M	113G	21.2
	50	20%	\checkmark	48.8	69.4	53.0	30.4	51.9	64.8	41M	121G	20.0
Sparse-DETR	50	30%	\checkmark	49.1	69.5	53.5	31.4	52.5	65.1	41M	129G	18.9
-	50	40%	\checkmark	49.2	69.5	53.5	31.4	52.9	64.8	41M	136G	18.0
	50	50%	\checkmark	49.3	69.5	53.3	32.0	52.7	64.9	41M	144G	17.2

Visualization

Visualization

Conclusion

• We propose **the encoder token sparsification method**, which lightens the attention complexity in the encoder.

Conclusion

- We propose **the encoder token sparsification method**, which lightens the attention complexity in the encoder.
- We propose novel sparsification criteria to sample the informative subset from the entire token set: *Decoder cross-Attention Map* (DAM)

Conclusion

- We propose **the encoder token sparsification method**, which lightens the attention complexity in the encoder.
- We propose novel sparsification criteria to sample the informative subset from the entire token set: *Decoder cross-Attention Map* (DAM)
- Sparse DETR outperforms the Deformable DETR even when using only 10% of the encoder token, and decreases the overall computation by 38%

Code & models are available now. https://github.com/kakaobrain/sparse-detr

More experiments and ablation studies can be found in the paper

