Post-Training Detection of Backdoor Attacks for Two-Class and Multi-Attack Scenarios

Zhen Xiang, David J. Miller, George Kesidis

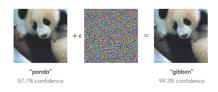
School of EECS, Pennsylvania State University

April 4, 2022

Adversarial Attacks

DNN image classifiers are threatened by adversarial attacks:

• Test-time evasion attack [SZS+14, MDFF16]



Backdoor (Trojan) attack [GLDG19, CLL⁺17, LMA⁺18]

• Other attacks: poisoning attack [BR18], model-stealing [LZ21], etc.

Backdoor Attacks

Elements of backdoor attack

- ullet A set of source classes \mathcal{S}^*
- A target class t*
- A backdoor pattern (i.e. a trigger)
 - Additive perturbation [ZLS⁺20]

$$M(x; v) = x + v$$

Patch replacement [GLDG19]

$$M(x; \{m, u\}) = x \odot (1 - m) + u \odot m$$

Backdoor Attacks

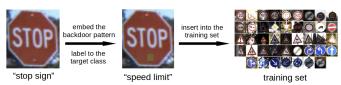
- Attacker's goals
 - Build a "backdoor mapping": source class samples with the backdoor pattern will be misclassified to the target class, i.e. maximize:

$$\operatorname{Prob}(f(M(X; v)) = t^*), \quad X \sim P_{S^*}$$

Not degrade accuracy on clean samples, i.e. maximize:

$$P(f(X) = Y), \quad \forall (X, Y) \sim P_{\text{data}}$$

• Launching strategy: Poisoning the training set [GLDG19]



Goals and assumptions of post-training backdoor defender

- Defender is the user who wants to make sure that the classifier is reliable before using it.
- Defender's goals
 - Detect if the classifier is backdoor attacked
 - Infer the target class when an attack is detected
- Defender's knowledge and capability
 - Defender does not know a priori if there is an attack.
 - Defender has no access to the classifier's training set.
 - Defender possesses an independent, small clean dataset for detection.
 - No clean classifiers for reference (e.g. set a detection threshold).

Reverse-engineering-based defense (RED) – an important family of post-training backdoor detection strategy [WYS+19, XMK20, GWX+19, WZL+20, CFZK19, LLT+19]

- Procedure
 - Backdoor pattern reverse-engineering
 E.g., for each class pair (s, t), find the min-sized perturbation inducing
 80% of samples from class s to be misclassified to class t (also, can apply to internal-layer activations) [XMK20].
 - Detection inference
 E.g. check if for any class pair, the estimated perturbation size is abnormally small, using statistical anomaly detection [XMK20].
- Limitations
 Not applicable to two-class scenarios no sufficient statistics for estimation of null distribution.

Key ideas

- Process each class independently: obtain an expected transferability (ET) statistic independently for each class, then compare ET with a detection threshold. ⇒ No need for null distribution estimation.
- There is a common threshold on ET to determine if a class is a backdoor target class, irrespective of the classification domain or particulars of the attack. ⇒ No deed for domain-specific supervision.

Definition of ET

• ϵ -solution set: For any x from any class, the ϵ -solution set is:

$$\mathcal{V}_{\epsilon}(\mathbf{x}) \triangleq \{v | ||v||_2 - ||v^*||_2 \leq \epsilon, f(x+v)) \neq f(\mathbf{x})\},$$

where v^* is the global optimal solution to

$$\underset{v}{\text{minimize}} ||v||_2 \quad \text{subject to } f(x+v) \neq f(x)$$

and $\epsilon>0$ is the "quality gap" of practical solutions to the same problem, which is usually small for existing methods.

Definition of ET (cont'd)

• ϵ -transferable set: The ϵ -transferable set for any sample x and $\epsilon>0$ is defined by

$$\mathcal{T}_{\epsilon}(\mathsf{x}) \triangleq \{ \mathsf{y} \in \mathcal{X} \, \middle| \, f(\mathsf{y}) = f(\mathsf{x}), \exists \mathsf{v} \in \mathcal{V}_{\epsilon}(\mathsf{x}) \, \mathrm{s.t.} \, f(\mathsf{y} + \mathsf{v}) \neq f(\mathsf{y}) \}.$$

• ET statistic: For any class $i \in \mathcal{Y} = \{0,1\}$ and $\epsilon > 0$, considering i.i.d. random samples X, Y $\sim P_i$, the ET statistic for class i is defined by

$$\mathrm{ET}_{i,\epsilon} \triangleq \mathbb{E}_{\mathsf{X} \sim P_i} \big[\mathrm{P}(\mathsf{Y} \in \mathcal{T}_{\epsilon}(\mathsf{X}) | \mathsf{X}) \big].$$

P_i: sample distribution of class i

Detection method

- Properties of ET: There exists a constant detection threshold (details skipped)
 - If class $i\in\mathcal{Y}=\{0,1\}$ is not backdoor target class, we will have $\mathrm{ET}_{1-i,\epsilon}\leq \frac{1}{2}$
 - Otherwise, we will have $\mathrm{ET}_{1-i,\epsilon} > \frac{1}{2}$
- Detection procedure
 - Estimate ET for each class
 - Check if there is any ET statistic greater than $\frac{1}{2}$
- Generalization
 - No specification on the method for pattern estimation.
 - Can be naturally extended to multi-class domains "one versus all".
 - Extend to other backdoor patterns.

ET - experiments

- Dataset: CIFAR-10, CIFAR-100, STL-10, TinylmageNet, FMNIST, MNIST
- Backdoor pattern: both additive perturbation and patch replacement, examples:

ET – experiments (cont'd)

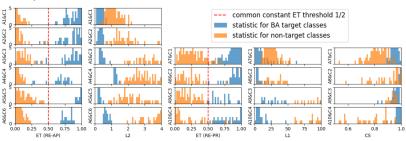
• Detection accuracy using ET (2-class domains, ET threshold $\frac{1}{2}$)

		A_2								
RE-AP	45/45	18/20	16/20	17/20	20/20	20/20	n/a	n/a	n/a	n/a
		n/a								
			C_1							
	-	RE-AP							_	

- \bullet $A_1{\sim}A_6$: attack instances with additive perturbation backdoor patterns
- \bullet $A_7{\sim}A_{10}{:}$ attack instances with patch replacement backdoor patterns
- $C_1 \sim C_6$: clean instances
- RE-AP: our method with backdoor pattern reverse-engineering algorithm in [XMK20]
- RE-PR: our method with backdoor pattern reverse-engineering algorithm in [WYS⁺19]

ET - experiments (cont'd)

• Comparison between ET and other detection statistics



- L₁: I_1 norm of estimated mask [WYS⁺19]
- L₂: I₂ norm of estimated perturbation [XMK20]
- CS: cosine similarity [WZL⁺20]

References I

B. Biggio and F. Roli.

Wild patterns: Ten years after the rise of adversarial machine learning. *Pattern Recognition*, 84:317–331, 2018.

Deepinspect: A black-box trojan detection and mitigation framework for deep neural networks.

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 4658–4664, 7 2019.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song.

Targeted backdoor attacks on deep learning systems using data poisoning.

https://arxiv.org/abs/1712.05526v1, 2017.

References II

Badnets: Evaluating backdooring attacks on deep neural networks. *IEEE Access*, 7:47230–47244, 2019.

W. Guo, L. Wang, X. Xing, M. Du, and D. Song.

TABOR: A highly accurate approach to inspecting and restoring Trojan backdoors in Al systems.

https://arxiv.org/abs/1908.01763, 2019.

Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang.

Abs: Scanning neural networks for back-doors by artificial brain stimulation.

In *CCS*, 2019.

Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, and J Zhai.

Trojaning attack on neural networks.

In Proc. NDSS, San Diego, CA, Feb. 2018.

References III

X Jia Y Jiang ST Xia X Cao L Zhu, Y Li.

Defending against model stealing via verifying embedded external features.

In ICML Workshop on Adversarial Machine Learning, 2021.

S.-M. M.-Dezfooli. A. Fawzi. and P. Frossard.

DeepFool: a simple and accurate method to fool deep neural networks.

In Proc. CVPR. 2016.

C. Szegedy, W. Zaremba, I Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.

Intriguing properties of neural networks.

In Proc. ICLR, 2014.

References IV

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B.Y. Zhao.

Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.

In Proc. IEEE Symposium on Security and Privacy, 2019.

R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang. Practical detection of trojan neural networks: Data-limited and data-free cases.

In Proc. ECCV, 2020.

Z. Xiang, D. J. Miller, and G. Kesidis.

Detection of backdoors in trained classifiers without access to the training set.

IEEE Transactions on Neural Networks and Learning Systems, pages 1–15, 2020.

References V

H. Zhong, C. Liao, A. Squicciarini, S. Zhu, and D.J. Miller. Backdoor embedding in convolutional neural network models via invisible perturbation.

In Proc. CODASPY, March 2020.

Thanks

• Thanks for your attention!