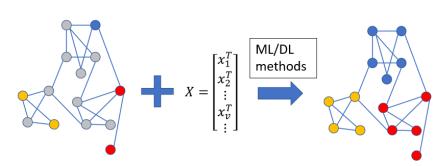
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction

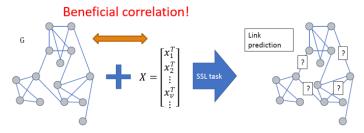
Eli Chien¹ Wei-Cheng Chang² Cho-Jui Hsieh³ Hsiang-Fu Yu² Jiong Zhang² Olgica Milenkovic¹ Inderiit S. Dhillon²

> University of Illinois Urbana-Champaign, Illinois, USA¹ Amazon Search, USA2 University of California, Los Angeles, USA³


1/12

ICI R 2022

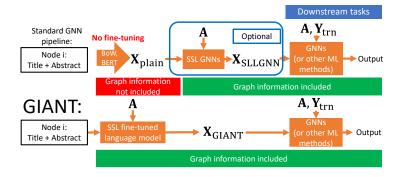
Eli Chien (UIUC) ICLR 2022


Machine learning on graphs

- Machine learning on graphs, especially graph neural networks (GNNs), has achieved great success recently.
- Although there are various tasks (i.e. graph classification), we focus on node classification in this work.
- Standard GNN pipeline assumes the input is a graph paired with numerical node features.

Self-supervised learning (SSL) in GNNs

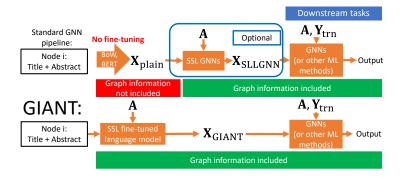
- Training large scale GNNs usually requires numerous task-specific labeled data, which can be expensive in practice.
- Recently, researchers proposed to alleviate this issue with SLL.
- The idea is to design SSL tasks using only *X* and *G* without task-specific labels.
- By solving SSL tasks, we hope to either get a more informative node embedding or a well-initialized GNN.
- Key intuition: X and G are both correlated to downstream tasks.



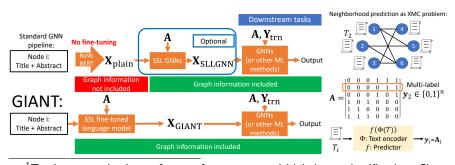
Issue of standard GNN pipeline

- A critical yet neglected problem: How to obtain the numerical node features from raw data, such as text, images and audio signals?
- Standard approach is to use graph agnostic methods: Bag-of-Words (BoW), pretrained BERT ... etc.
- Clearly, using graph agnostic methods is suboptimal, as the beneficial correlation between graph topology and raw features is ignored.

GIANT framework


 We propose Graph Information Aided Node feature exTraction (GIANT) framework to resolve the aforementioned issue.

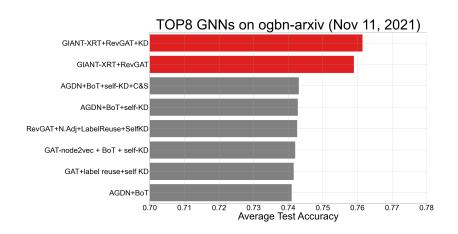
Eli Chien (UIUC) GIANT-XRT ICLR 2022 5/12


GIANT framework

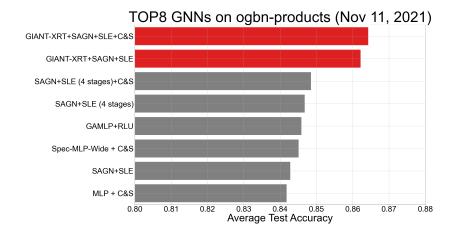
- Raw feature: raw text.
- We design a new SSL task, neighborhood prediction, which can work for both homophily and heterophily cases.

GIANT framework with XR-Transformer

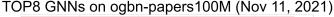
- We show that neighborhood prediction is an eXtreme Multilabel Classification (XMC) problem¹.
- Thus, we can leverage the state-of-the-art method, XR-Transformer (XRT)², to solve it.

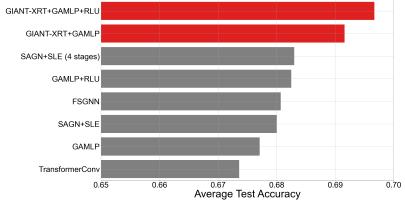


¹Taming pre-trained transformers for extreme multi-label text classification. Chang et al. KDD 2020.


Eli Chien (UIUC) GIANT-XRT ICLR 2022 7/12

²Fast multi-resolution transformer fine-tuning for extreme multi-label text classification. Zhang et al. NeurIPS 2021.


Results on OGB-arxiv



Results on OGB-products

Results on OGB-papers100M

10 / 12

More results

- We have showed that standard Link Prediction methodology is not a suitable SSL task for heterophily graphs, while our neighborhood prediction is.
- By leveraging the graph learning analysis, we are able to prove the benefit of components in XRT.
- We conduct extensive experiments and ablation study to show the effectiveness of GIANT + XRT.
- Please check our paper and poster for more details.

Eli Chien (UIUC) GIANT-XRT ICLR 2022 11 / 12

Thanks for your attention!

Please also check our work on hypergraph neural networks³!

Eli Chien (UIUC) GIANT-XRT ICLR 2022

12 / 12

³You are AllSet: A Multiset Learning Framework for Hypergraph Neural Networks, Chien et al. ICLR 2022