

Learning to Extend Molecular Scaffolds with Structural Motifs

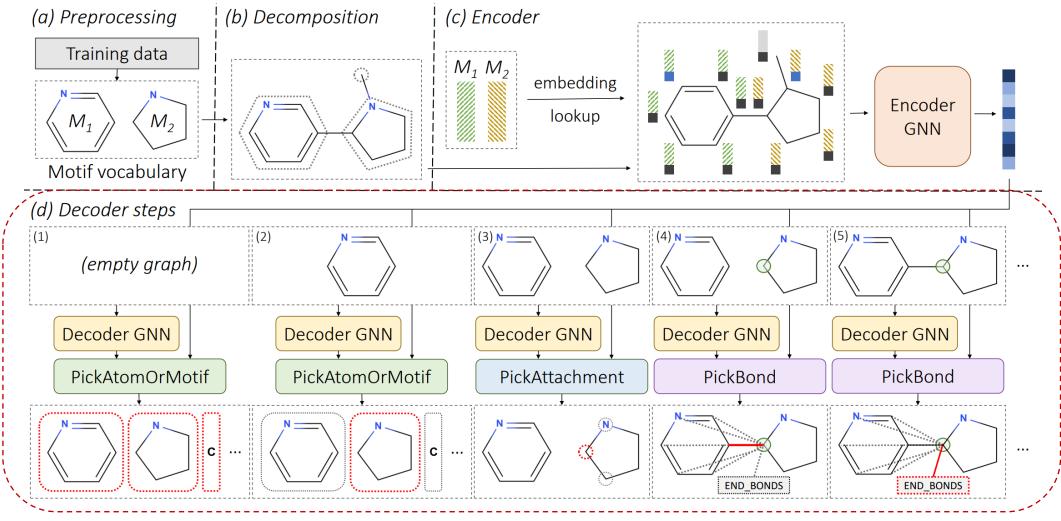
Presentation for ICLR 2022

<u>Krzysztof Maziarz</u>¹, Henry Jackson-Flux¹, Pashmina Cameron¹, Finton Sirockin², Nadine Schneider², Nikolaus Stiefl², Marwin Segler¹, Marc Brockschmidt¹

Collaboration between ¹Microsoft Research and ²Novartis

Research Questions

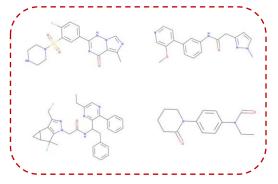
Observation 1: in practice, molecule generation constrained by presence of a given scaffold is required

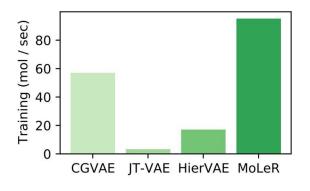

Q1: Can one model succeed at both scaffold-based and unconstrained generation?

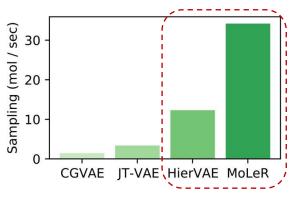
Observation 2: motifs (common molecule fragments) crucial for success of recent graph-based models (JT-VAE, HierVAE), but limit expressivity

Q2: Can we get the benefits of fragment-based generation without its restrictions?

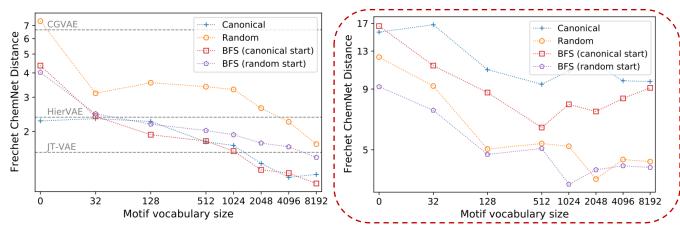
Our new model MoLeR answers "yes" to both.


MoLeR Model: Overview

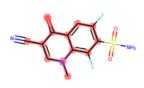

decoder steps independent given encoder output \rightarrow can start from scaffold

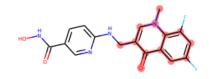

Results

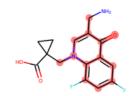
			<i></i>	
	GuacaMol		Scaffolds	
Method	Score	Quality	Score	Quality
Best of dataset	0.61	0.77	0.17	-
SMILES LSTM	0.87	0.77	0.45	-
SMILES GA	0.72	0.36	0.45	-
GRAPH MCTS	0.45	0.22	0.20	-
GRAPH GA	0.90	0.40	0.79	-
CDDD + MSO	0.90	0.58	0.92	0.59
MNCE-RL	0.92	0.54	0.95	0.47
MoLeR + MSO	0.82	0.75	0.93	0.63

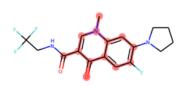


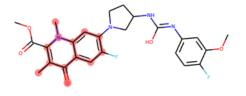
new benchmarks (complex scaffolds)

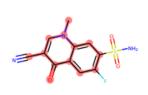


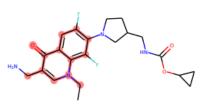


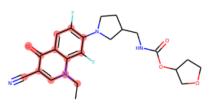

sampling 2.7x faster than HierVAE




randomized generation order crucial for working with scaffolds






Thank you for listening!

Poster 7209

arXiv: arxiv.org/abs/2103.03864

Code: github.com/microsoft/molecule-generation

