On the Optimal Memorization Power of ReLU Neural Networks ICLR 2022

Gal Vardi, Gilad Yehudai and Ohad Shamir

Weizmann Institute

Memorization

The problem

What is the minimal size s(n) of NN that suffices to interpolate every size-*n* dataset?

size = number of neurons or parameters

Memorization

The problem

What is the minimal size s(n) of NN that suffices to interpolate every size-n dataset?

size = number of neurons or parameters

- A natural notion of expressiveness.
- Related to the *double descent* phenomenon: the second descent starts after the *interpolation threshold*.

Studied since the 80's...

Some results for ReLU networks:

- Depth 2: $4 \cdot \lceil n/d \rceil$ neurons, for *n* points in general position in \mathbb{R}^d [Bubeck et al. 2020, Baum 1988].
- Depth 3: $O(\sqrt{n})$ neurons, O(n) parameters [Yun et al. 2019].
- Deep: $O(n^{2/3} + \log(1/\delta))$ parameters for δ -separated data [Park et al. 2021].

Studied since the 80's...

Some results for ReLU networks:

- Depth 2: $4 \cdot \lceil n/d \rceil$ neurons, for *n* points in general position in \mathbb{R}^d [Bubeck et al. 2020, Baum 1988].
- Depth 3: $O(\sqrt{n})$ neurons, O(n) parameters [Yun et al. 2019].
- Deep: $O(n^{2/3} + \log(1/\delta))$ parameters for δ -separated data [Park et al. 2021].

Lower bound (from VCdim):

 $\Omega(\sqrt{n})$ parameters [Goldberg & Jerrum 1995]

Optimal memorization capacity

Theorem

Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{1, \ldots, C\}$ where d is constant, $||x_i|| \leq r$ for every i, and $||x_i - x_j|| \geq \delta$ for every $i \neq j$. Then, there exists a ReLU network $F : \mathbb{R}^d \to \mathbb{R}$ with $\tilde{O}(\sqrt{n})$ parameters, such that $F(x_i) = y_i$ for every $i \in [n]$.

 $ilde{O}(\cdot)$ hides log factors in n, C, r, δ^{-1}

Optimal memorization capacity

Theorem

Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \{1, \ldots, C\}$ where d is constant, $||x_i|| \leq r$ for every i, and $||x_i - x_j|| \geq \delta$ for every $i \neq j$. Then, there exists a ReLU network $F : \mathbb{R}^d \to \mathbb{R}$ with $\tilde{O}(\sqrt{n})$ parameters, such that $F(x_i) = y_i$ for every $i \in [n]$. $\tilde{O}(\cdot)$ hides log factors in n, C, r, δ^{-1}

Matches the $\Omega(\sqrt{n})$ lower bound (up to log factors)

 \Rightarrow Memorizing all size-*n* datasets is not harder than shattering a single size-*n* set (up to log factors...)

Is depth required for efficient memorization?

- Our construction: $\tilde{O}(\sqrt{n})$ depth. Can we do better?
- A lower bound implied by [Bartlett et al. 2019]:
 - Memorizing *n* points with depth *L* requires $\tilde{\Omega}(n/L)$ parameters.

Is depth required for efficient memorization?

- Our construction: $\tilde{O}(\sqrt{n})$ depth. Can we do better?
- A lower bound implied by [Bartlett et al. 2019]:
 - Memorizing *n* points with depth *L* requires $\tilde{\Omega}(n/L)$ parameters.

Theorem

Let $1 \le L \le \sqrt{n}$. We can memorize n points with depth L and $\tilde{O}(n/L)$ parameters.