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Memorization

The problem

What is the minimal size s(n) of NN that suffices to interpolate
every size-n dataset?

size = number of neurons or parameters

A natural notion of expressiveness.

Related to the double descent phenomenon: the second
descent starts after the interpolation threshold.

Gal Vardi, Gilad Yehudai and Ohad Shamir The Optimal Memorization Power of ReLU Networks 2/5



Memorization

The problem

What is the minimal size s(n) of NN that suffices to interpolate
every size-n dataset?

size = number of neurons or parameters

A natural notion of expressiveness.

Related to the double descent phenomenon: the second
descent starts after the interpolation threshold.

Gal Vardi, Gilad Yehudai and Ohad Shamir The Optimal Memorization Power of ReLU Networks 2/5



Memorization – known results

Studied since the 80’s...
Some results for ReLU networks:

Depth 2: 4 · dn/de neurons, for n points in general position in
Rd [Bubeck et al. 2020, Baum 1988].

Depth 3: O(
√
n) neurons, O(n) parameters [Yun et al. 2019].

Deep: O
(
n2/3 + log(1/δ)

)
parameters for δ-separated data

[Park et al. 2021].

Lower bound (from VCdim):
Ω(
√
n) parameters [Goldberg & Jerrum 1995]
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Optimal memorization capacity

Theorem

Let (x1, y1), . . . , (xn, yn) ∈ Rd × {1, . . . ,C} where d is constant,
‖xi‖ ≤ r for every i , and ‖xi − xj‖ ≥ δ for every i 6= j . Then, there
exists a ReLU network F : Rd → R with Õ

(√
n
)
parameters, such

that F (xi ) = yi for every i ∈ [n].

Õ(·) hides log factors in n,C , r , δ−1

Matches the Ω(
√
n) lower bound (up to log factors)

⇒ Memorizing all size-n datasets is not harder than shattering
a single size-n set (up to log factors...)
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Is depth required for efficient memorization?

Our construction: Õ(
√
n) depth. Can we do better?

A lower bound implied by [Bartlett et al. 2019]:

Memorizing n points with depth L requires Ω̃(n/L) parameters.

Theorem

Let 1 ≤ L ≤
√
n. We can memorize n points with depth L and

Õ(n/L) parameters.
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