

Optimization in ML and DL - A discussion on theory and practice

Tue 26 Apr & Thu 28 Apr @ 3:00am - 5:00am UTC / Mon 25 Apr & Wed 27 Apr @ 8:00pm - 10:00pm PST /

Machine Learning and Fitness

Mon 25 Apr @ 8:00pm - 10:00pm PST

Speaker: **Jacob Rafati**Founder of Workout Vision INC

in https://www.linkedin.com/in/jacob-rafati/

Machine Learning and Fitness: Personal training and fitness processes are difficult to optimize manually without using machine learning methods. In this session, Jacob Rafati will talk about the fitness problems and the optimization methods that he is implementing at Workout Vision INC. <u>More Details...</u>

Second-order Optimization in ML/DL

Wed 27 Apr @ 8:00pm - 10:00pm PST

Speaker: Indra Priyadarsini S Ph.D. Candidate, Shizuoka University

in https://www.linkedin.com/in/indra-ipd/

Second-order Optimization in ML/DL: Optimization plays an important role in machine learning and deep learning. While first-order gradient-based methods are predominantly used as the first choice in ML and DL, second-order quasi-Newton (QN) methods are not commonly used despite their fast convergences. In this social, we will go through the effectiveness of second order methods in training neural networks and further look into its acceleration using Nesterov's gradient.

Optimization in ML and DL A discussion on theory and practice

Tue 26 Apr & Thu 28 Apr @ 3:00am - 5:00am UTC / Mon 25 Apr & Wed 27 Apr @ 8:00pm - 10:00pm PST /

Second-order Optimization for Training Neural Networks

S. Indrapriyadarsini

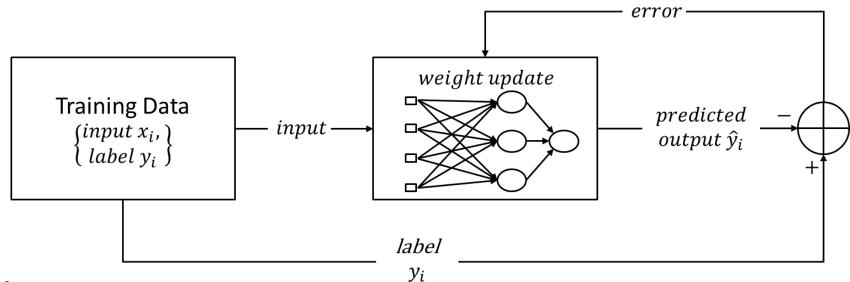
28th April 2022

Outline

- > Introduction
- Gradient Based Training
 - > First Order Methods
 - Second Order Methods
- Nesterov's Accelerated quasi-Newton Methods

OPTIMIZATION IN SUPERVISED LEARNING

- \triangleright Given a dataset (x_i, y_i)
- \triangleright Neural network : Parameterized model to map function $f_w(x) \rightarrow y$



Objective function

$$\min_{w \in \mathbb{R}^d} E(w) = \frac{1}{|T_r|} \sum_{i \in T_r} E_i(w) \quad \text{where} \quad E_i(w) = \frac{1}{2} \|y_i - \hat{y}_i\|^2 \quad \text{(Eg. MSE)}$$

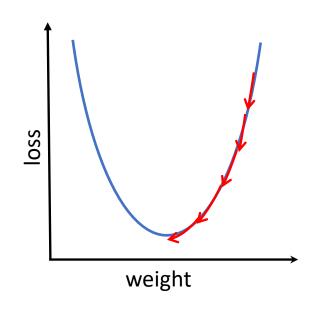
GRADIENT BASED ALGORITHMS

FIRST ORDER METHODS

- Slow convergence in highly non-linear problems
- Simple and low complexity

$$\mathbf{w} \coloneqq \mathbf{w} - \alpha \frac{\partial E}{\partial \mathbf{w}} \quad \neg \mathbf{Gradient}$$

$$\nabla E(\mathbf{w})$$



SECOND/APPROXIMATED SECOND ORDER METHODS

- > Faster convergence
- Suitable for highly nonlinear problems
- > High computational cost

$$W \coloneqq W - \alpha H \nabla E(W)$$

Classical Momentum
Nesterov's Accelerated Gradient (NAG)
AdaGrad, RMSProp, Adam

Newton Method
Quasi-Newton Method (QN)
Nesterov's Accelerated quasi-Newton (NAQ)

FIRST ORDER ALGORITHMS

The weight vector is updated by the update vector v_{k+1} as

$$w_{k+1} = w_k + v_{k+1}$$
 ... (Eq. 1)

Steepest gradient descent(SGD) with a step size α_k

$$v_{k+1} = -\alpha_k \nabla E(w_k)$$

... (Eq. 2)

Normal Gradient

Classical momentum (CM) method

$$v_{k+1} = \mu v_k - \alpha_k \nabla E(w_k)$$

... (Eq. 3)

Momentum term

Nesterov's Accelerated Gradient (NAG) method

$$v_{k+1} = \mu v_k - \alpha_k \nabla E(w_k + \mu v_k) \qquad \dots (Eq. 4)$$

Momentum term

Nesterov's Accelerated Gradient (NAG)

QUASI-NEWTON METHOD

The weight is updated with update vector v_{k+1} as:

$$w_{k+1} = w_k + v_{k+1}$$
 ... (Eq. 5)

The weight update of quasi-Newton (QN) method is given as

$$v_{k+1} = -\alpha_k H_k \nabla E(w_k) \qquad \dots (Eq. 6)$$

Normal Gradient

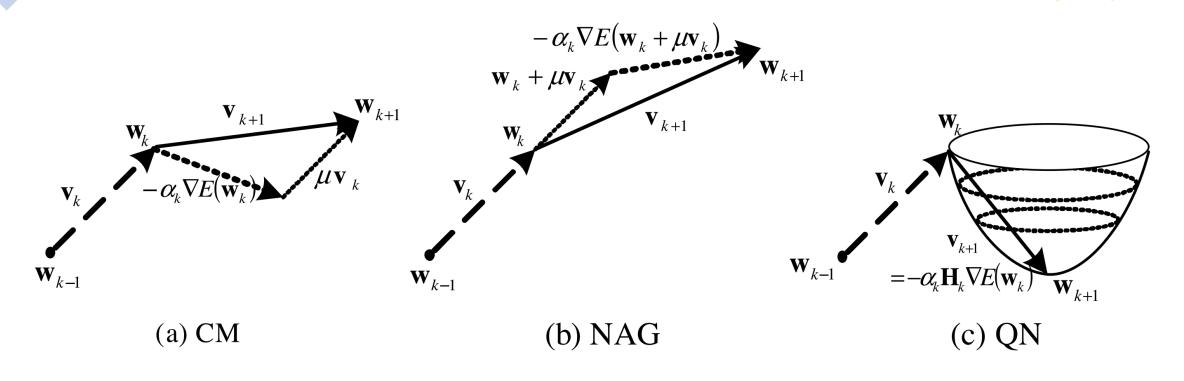
The matrix \mathbf{H}_k is iteratively approximated by BFGS formula

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T \dots (Eq.7)$$

$$\rho_k = \frac{1}{y_k^T s_k}, \ s_k = w_{k+1} - w_k \text{ and } y_k = \nabla E(w_{k+1}) - \nabla E(w_k) \quad ... (Eq. 8)$$

Normal Gradients

GEOMETRIC VIEWS



Source: H. Ninomiya, "A novel quasi-Newton-Optimization for neural network training incorporating Nesterov's accelerated gradient", IEICE NOLTA Journal, Oct. 2017.

NESTEROV'S ACCELERATED QUASI-NEWTON METHOD (NAQ)

The update vector of NAQ

$$\mathbf{w_{k+1}} = \mathbf{w_k} + \mu \mathbf{v_k} - \alpha_k \mathbf{H_k} \nabla E(\mathbf{w_k} + \mu \mathbf{v_k})$$

... (Eq. 9)

Momentum term

Nesterov's Accelerated Gradient(NAG)

The matrix H_k is iteratively approximated by

$$H_{k+1} = (I - \rho_k p_k q_k^T) H_k (I - \rho_k q_k p_k^T) + \rho_k p_k p_k^T \quad \dots (Eq. 10)$$

$$\rho_k = \frac{1}{q_k^T p_k}, \ p_k = w_{k+1} - (w_k + \mu v_k) \text{ and } q_k = \nabla E(w_{k+1}) - \nabla E(w_k + \mu v_k)$$

Two gradient computations per iteration

Normal Gradient

Nesterov's Accelerated Gradient(NAG)

H. Ninomiya, "A novel quasi-Newton-Optimization for neural network training incorporating Nesterov's accelerated gradient", IEICE NOLTA Journal, Oct. 2017.

MOMENTUM QUASI-NEWTON METHOD (MOQ)

The update vector of NAQ

$$\mathbf{w_{k+1}} = \mathbf{w_k} + \mu \mathbf{v_k} - \alpha_k \mathbf{H_k} \nabla E(\mathbf{w_k} + \mu \mathbf{v_k}) \qquad \dots (Eq. 11)$$

Momentum term

Nesterov's Accelerated Gradient(NAG)

Nesterov's accelerated gradient approximation

$$\nabla E(\mathbf{w}_k + \mu \mathbf{v}_k) \approx (1 + \mu_k) \nabla E(\mathbf{w}_k) - \mu_k \nabla E(\mathbf{w}_{k-1}) \dots (Eq. 12)$$

and the Hessian matrix H_k is updated as

$$H_{k+1} = (I - \rho_k p_k q_k^T) H_k (I - \rho_k q_k p_k^T) + \rho_k p_k p_k^T \dots (Eq. 13)$$

$$\rho_k = \frac{1}{q_k^T p_k}, \ p_k = w_{k+1} - (w_k + \mu v_k) \text{ and } q_k = \nabla E(w_{k+1}) - \{(1 + \mu_k) \nabla E(w_k) - \mu_k \nabla E(w_{k-1})\}$$

Shahrzad Mahboubi, S. Indrapriyadarsini, Hiroshi Ninomiya, Hideki Asai, "Momentum acceleration of quasi-Newton Training for Neural Networks", 16th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2019, (pp. 268-281). Springer, Cham.

OBJECTIVES

- Study behavior of first and second order methods in training neural networks
- Investigate and propose Nesterov and momentum accelerated second order methods for training neural networks
- Demonstrate robustness and efficiency of Nesterov and momentum accelerated quasi-Newton methods

QUASI-NEWTON METHOD

$$E(\mathbf{w}_k + \mathbf{d}) \approx m_k(\mathbf{d}) \approx E(\mathbf{w}_k) + \nabla E(\mathbf{w}_k)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 E(\mathbf{w}_k) \mathbf{d}. \qquad ... (Eq. 14)$$

• The minimizer \mathbf{d}_k is given as

$$\mathbf{d}_k = -\nabla^2 E(\mathbf{w}_k)^{-1} \nabla E(\mathbf{w}_k) = -\mathbf{B}_k^{-1} \nabla E(\mathbf{w}_k) . \qquad ... (Eq. \mathbf{15})$$

• The new iterate \mathbf{w}_{k+1} is given as,

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \mathbf{B}_k^{-1} \nabla E(\mathbf{w}_k), \qquad \dots (Eq. \mathbf{16})$$

and the quadratic model at the new iterate is given as

$$E(\mathbf{w}_{k+1} + \mathbf{d}) \approx m_{k+1}(\mathbf{d}) \approx E(\mathbf{w}_{k+1}) + \nabla E(\mathbf{w}_{k+1})^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{B}_{k+1} \mathbf{d} \dots (Eq. \mathbf{17})$$

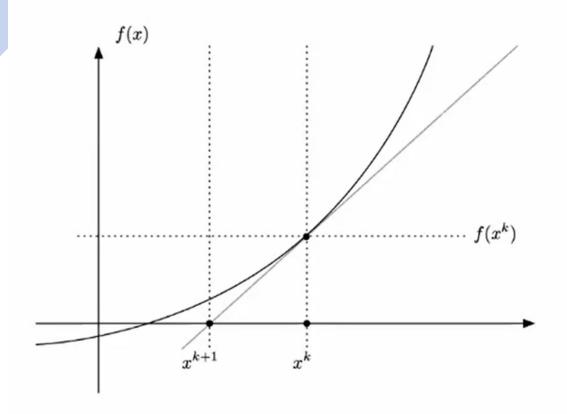
QUASI-NEWTON METHOD + NESTEROV'S ACCELERATION

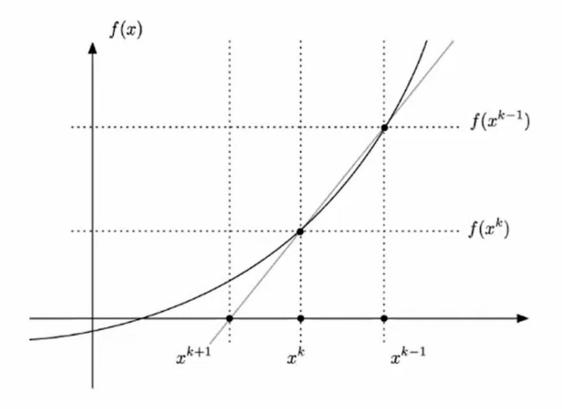
The Nesterov's acceleration approximates the quadratic model at $\mathbf{w_k} + \mu \mathbf{v_k}$ instead of the iterate at $\mathbf{w_k}$

The new iterate \mathbf{w}_{k+1} is given as,

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \mu_k \mathbf{v}_k - \alpha_k \mathbf{B}_k^{-1} \nabla E(\mathbf{w}_k + \mu_k \mathbf{v}_k)$$
$$= \mathbf{w}_k + \mu_k \mathbf{v}_k + \alpha_k \mathbf{d}_k.$$

QUASI-NEWTON METHOD: SECANT CONDITION





Newton: $\boldsymbol{B}^k = D\boldsymbol{F}(\boldsymbol{x}^k)$

Direct: $\boldsymbol{B}^k(\boldsymbol{x}^k - \boldsymbol{x}^{k-1}) = \boldsymbol{F}(\boldsymbol{x}^k) - \boldsymbol{F}(\boldsymbol{x}^{k-1})$

Dual: $x^k - x^{k-1} = H^k(F(x^k) - F(x^{k-1}))$

QUASI-NEWTON METHOD + NESTEROV'S ACCELERATION

We have

$$E(\mathbf{w}_k + d) \approx m_k(\mathbf{d})$$
$$E(\mathbf{w}_{k+1} + d) \approx m_{k+1}(\mathbf{d})$$

Require:

 m_{k+1} matches the gradient at the previous **two** iterations, i.e.,

1.
$$\nabla m_{k+1}|_{\mathbf{d}=0} = \nabla E(\mathbf{w}_{k+1} + \mathbf{d})|_{\mathbf{d}=0} = \nabla E(\mathbf{w}_{k+1}).$$

2.
$$\nabla m_{k+1}|_{\mathbf{d}=-\alpha_k\mathbf{d}_k} = \nabla E(\mathbf{w}_{k+1}+\mathbf{d})|_{\mathbf{d}=-\alpha_k\mathbf{d}_k} = \nabla E(\mathbf{w}_{k+1}-\alpha_k\mathbf{d}_k) = \nabla E(\mathbf{w}_k+\mu_k\mathbf{v}_k)$$

QUASI-NEWTON METHOD + NESTEROV'S ACCELERATION

Proof:
$$E(\mathbf{w}_{k+1} + d) \approx m_{k+1}(\mathbf{d}) = E(\mathbf{w}_{k+1}) + \nabla E(\mathbf{w}_{k+1})^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 E(\mathbf{w}_{k+1}) \mathbf{d}$$

Condition 1:
$$\nabla m_{k+1}|_{\mathbf{d}=0} = \nabla E(\mathbf{w}_{k+1} + \mathbf{d})|_{\mathbf{d}=0} = \nabla E(\mathbf{w}_{k+1})$$

$$\nabla m_{k+1}(\boldsymbol{d}) = \nabla E(\boldsymbol{w}_{k+1}) + \nabla^2 E(\boldsymbol{w}_{k+1}) \boldsymbol{d}$$

$$\nabla m_{k+1}(0) = \nabla E(\mathbf{w}_{k+1}) + \nabla^2 E(\mathbf{w}_{k+1}) \mathbf{d} \mid_{\mathbf{d}=0} \Rightarrow \mathbf{satisfied}$$

Condition 2:
$$\nabla m_{k+1}|_{\mathbf{d}=-\alpha_k\mathbf{d}_k} = \nabla E(\mathbf{w}_{k+1}+\mathbf{d})|_{\mathbf{d}=-\alpha_k\mathbf{d}_k} = \nabla E(\mathbf{w}_{k+1}-\alpha_k\mathbf{d}_k) = \nabla E(\mathbf{w}_k+\mu_k\mathbf{v}_k)$$

$$\nabla m_{k+1}(-\alpha \boldsymbol{d}_k) = \nabla E(\boldsymbol{w}_{k+1}) - \alpha \nabla^2 E(\boldsymbol{w}_{k+1}) \boldsymbol{d}_k$$

$$\nabla m_{k+1}(-\alpha \boldsymbol{d}_k) = \nabla E(\boldsymbol{w}_{k+1}) - \alpha \nabla^2 E(\boldsymbol{w}_{k+1}) \boldsymbol{d}_k = \nabla E(\boldsymbol{w}_{k+1} - \alpha \boldsymbol{d}_k) = \nabla E(\boldsymbol{w}_k + \mu \boldsymbol{v}_k)$$

$$\nabla E(\boldsymbol{w}_{k+1}) - \alpha \nabla^2 E(\boldsymbol{w}_{k+1}) \boldsymbol{d}_k = \nabla E(\boldsymbol{w}_k + \mu \boldsymbol{v}_k)$$

$$\nabla E(\boldsymbol{w}_{k+1}) - \nabla E(\boldsymbol{w}_k + \mu \boldsymbol{v}_k) = \boldsymbol{B}_{k+1}(\boldsymbol{w}_{k+1} - (\boldsymbol{w}_k + \mu \boldsymbol{v}_k))$$

$$q_k = B_{k+1} p_k \Rightarrow Secant Condition$$

 $(p_k, q_k) \Rightarrow Curvature\ Information\ Pair$

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov's Gradient", Algorithms 2022, 15(1), 6;

BEALE FUNCTION

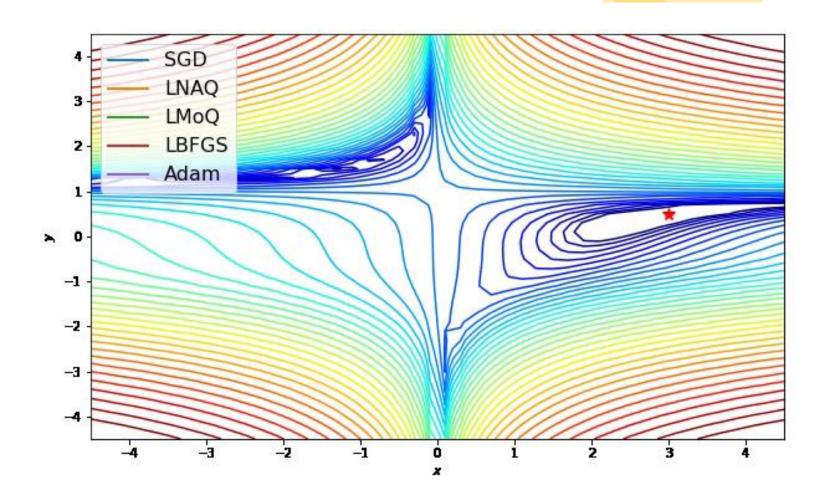
The Beale function is multimodal, with sharp peaks at the corners of the input domain

Unconstrained test function

$$f(x) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$$

Global minimum

$$f(x^*) = 0$$
 at $x^* = (3,0.5)$



Global Optimization Test Problems. Retrieved June 2013, from http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm.

Modified Nesterov's Accelerated BFGS quasi-Newton - mNAQ

1) Incorporating an additional $\hat{\xi}_k p_k$ term for better convergence

$$p_k = w_{k+1} - (w_k + \mu v_k)$$

$$q_k = \nabla E(w_{k+1}) - \nabla E(w_k + \mu v_k) + \frac{\hat{\xi}_k p_k}{\hat{\xi}_k p_k} = \varepsilon_k + \frac{\hat{\xi}_k p_k}{\hat{\xi}_k p_k}$$

⇒ Modified Secant Condition

$$\widehat{H}_{k+1} = (I - \rho_k p_k q_k^T) \widehat{H}_k (I - \rho_k q_k p_k^T) + \rho_k p_k p_k^T$$

convergence term

2) Eliminating linesearch

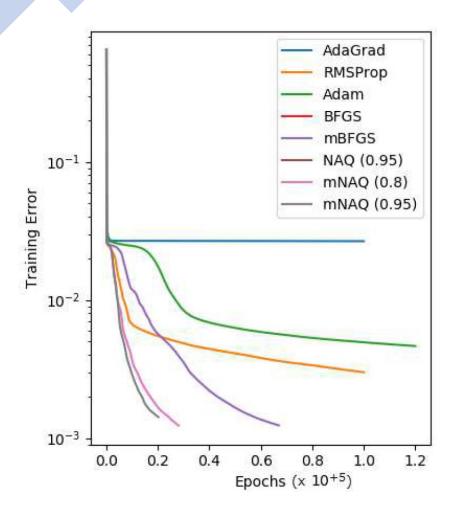
Determine step size α_k using the explicit formula

$$\alpha_k = -\frac{\delta \nabla E(w_k + \mu v_k)^T \widehat{g}_k}{\|\widehat{g}_k\|^2_{Q_k}}$$

Linesearch -> more number of function evaluations -> increased computation time

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "Implementation of a modified Nesterov's Accelerated quasi-Newton method on Tensorflow" In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE (2018) 1147–1154

Function Modeling Example



$$f(a, x, b) = 1 + (x + 2x^{2})\sin(-ax^{2} + b)$$

- Input nodes = 1
- Hidden neurons = 7
- Output nodes = 1
- Parameters = 22
- Training data: 400
- Test data: 10000

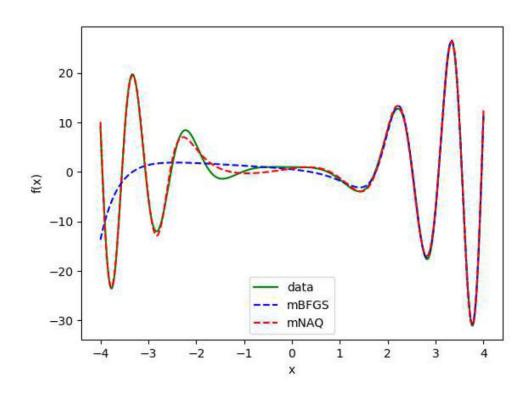
Indrapriyadarsini S., et. al. "Implementation of a modified Nesterov's Accelerated quasi-Newton method on Tensorflow" In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE (2018) 1147–1154

Function Modeling Example

$$f(a, x, b) = 1 + (x + 2x^{2})\sin(-ax^{2} + b)$$

SUMMARY OF SIMULATION RESULTS OF EXAMPLE 1.

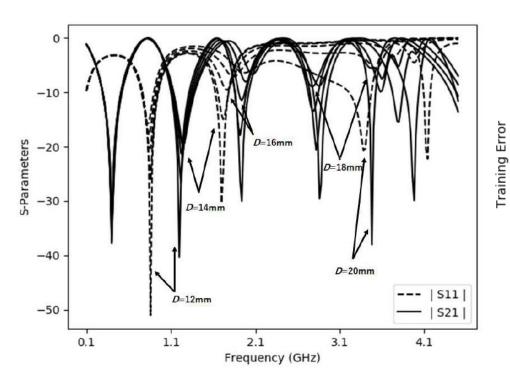
Algorithm	μ	$E(\mathbf{w})(\times 10^{-3})$	Time	Iteration	$E_{test}(\mathbf{w})(\times 10^{-3})$
		Ave/Best/Worst	(s)	count	Ave/Best/Worst
AdaGrad	-	59.8 / 58.6 / 60.2	40	100,000	59.03 / 57.69 / 59.48
RMSprop	-	3.34 / 0.564 / 7.89	41	100,000	3.35 / 0.409 / 8.16
Adam	-	4.15 / 0.324 / 14.3	42	100,000	4.14 / 0.359 / 14.53
BFGS	-	15.14 / 0.650 / 31.80	4.9	3,204	15.14 / 0.650 / 30.66
mBFGS	-	5.24 / 0.194 / 17.8	58	31,370	5.26 / 0.233 / 17.80
	0.8	1.94 / 0.307 / 6.33	23	9,006	1.94 / 0.307 / 6.33
mNAQ	0.85	0.974 / 0.307 / 5.00	19	7,549	0.980 / 0.315 / 5.00
	0.9	1.53 / 0.194 / 13.8	15	5,931	1.53 / 0.194 / 13.80
	0.95	1.30 / 0.195 / 6.31	11	4,461	1.30 / 0.233 / 6.31



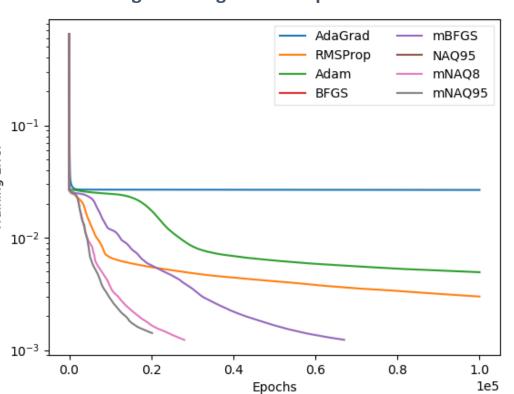
MICROSTRIP LOW PASS FILTER MODELING PROBLEM

Inputs : D=12,14,16,18,20mm Input frequency f = 0.1 - 4.5GHz

Outputs: S parameters $|s_{11}|$ and $|s_{21}|$



Average training error vs epoch over 15 trials



- Input nodes = 2
- Hidden neurons = 45
- Output nodes = 2
- Parameters = 227
- Training data: 1105
- Test data: 884

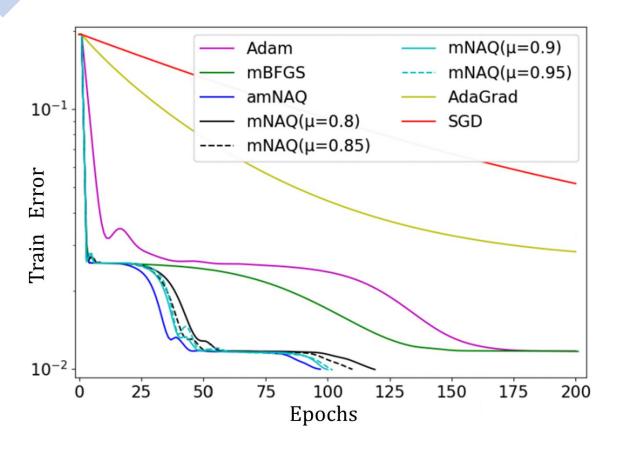
*Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "Implementation of a modified Nesterov's Accelerated quasi-Newton method on Tensorflow" In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE (2018) 1147–1154

MICROSTRIP LOW PASS FILTER MODELING PROBLEM

Algorithm	μ	$E(\mathbf{w})(\times 10^{-3})$ Ave/Best/Worst	Time (s)	Iteration count	$E_{test}(\mathbf{w})(\times 10^{-3})$ Ave/Best/Worst
AdaGrad	-	26.6 / 26.4 / 26.7	112	100,000	22.4 / 22.3 / 22.5
RMSprop	-	2.99 / 2.44 / 4.07	113	100,000	7.00 / 1.88 / 36.0
Adam	-	4.63 / 3.67 / 5.60	137	100,000	37.0 / 3.41 / 212.5
mBFGS	-	1.04 / 0.834 / 1.46	493	81,457	1.01 / 0.529 / 3.52
	0.8	0.93 / 0.827 / 1.37	303	38,470	0.744 / 0.534 / 1.07
mNAQ	0.85	1.02 / 0.756 / 1.62	314	39,678	7.32 / 5.75 / 87.8
	0.9	1.00 / 0.716 / 1.46	242	30,619	0.842 / 0.558 / 1.87
	0.95	1.24 / 0.834 / 1.85	209	26,547	2.08 / 0.600 / 13.7

^{*}Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "Implementation of a modified Nesterov's Accelerated quasi-Newton method on Tensorflow" In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), IEEE (2018) 1147–1154

CIRCUIT DESIGN OPTIMIZATION



$\begin{array}{|c|c|c|}\hline & Parameter & Value \\\hline Supply Voltage & \pm 2.5V \\ & \mu_n C_{ox} & 160 \mu A/V^2 \\ & \mu_p C_{ox} & 40 \mu A/V^2 \\ & Unity GBW & > 1 \ MHz \\\hline \end{array}$

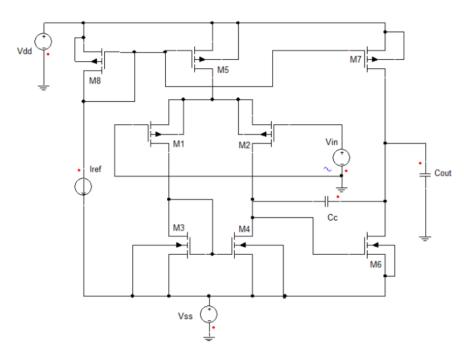
> 50 dB

>60 deg

Open Loop Gain $A_o(dB)$

Phase Margin

DESIGN SPECIFICATION



Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio and Hideki Asai. "A Neural Network Approach to Analog Circuit Design Optimization using Nesterov's Accelerated Quasi-Newton Method." 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020

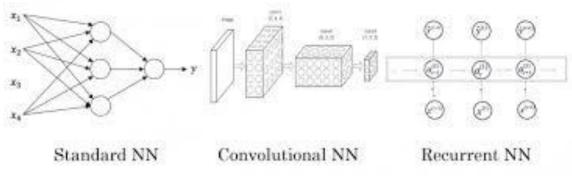
CIRCUIT DESIGN OPTIMIZATION

SUMMARY OF THE RESULTS OVER 30 TRIALS

Algorithm	μ_k	$E_{train}(\mathbf{w})(\times 10^{-3})$	CR	Average	$E_{test}(\mathbf{w})(\times 10^{-3})$
		Ave/Best/Worst	(%)	epochs	Ave/Best/Worst
SGD	-	66.402 / 43.153 / 113.334	-	200	68.428 / 45.852 / 118.620
AdaGrad	-	35.102 / 26.927 / 53.736	-	200	36.784 / 29.450 / 57.535
Adam	-	11.777 / 11.288 / 16.394	-	200	13.576 / 13.103 / 17.860
BFGS	-	11.354 / 11.287 / 11.464	-	200	13.193 / 13.142 / 13.261
	0.8	10.010 / 9.892 / 11.194	90	161	11.862 / 11.610 / 13.008
mNAQ	0.85	10.005 / 9.889 / 11.097	93.3	156	11.859 / 11.616 / 12.907
	0.9	9.966 / 9.880 / 10.478	93.3	156	11.813 / 11.603 / 12.416
	0.95	10.305 / 9.874 / 11.328	63.3	178	12.098 / 11.477 / 13.154
amNAQ	-	9.997 / 9.849 / 11.285	96.7	146	11.799 / 11.546 / 13.105

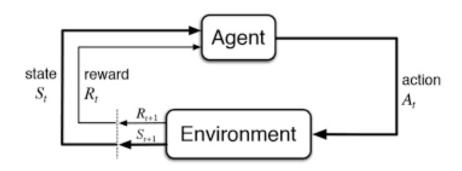
Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio and Hideki Asai. "A Neural Network Approach to Analog Circuit Design Optimization using Nesterov's Accelerated Quasi-Newton Method." 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020

Optimization in Large Scale Problems



Require

- Fast training
- Good accuracy
- Reduce computation cost



STOCHASTIC NESTEROV'S ACCELERATED QUASI-NEWTON

> The update vector of stochastic quasi-Newton (QN) method

$$v_{k+1} = -\alpha_k H_k \nabla E(w_k + \mu v_k, X_k)$$

NAQ computes two gradients per iteration (on same mini-batch)

$$p_k = w_{k+1} - (w_k + \mu v_k)$$

$$q_k = \nabla E(w_{k+1}, X_k) - \nabla E(w_k + \mu v_k, X_k) + \lambda p_k$$

$$\widehat{H}_{k+1} = (I - \rho_k p_k q_k^T) \widehat{H}_k (I - \rho_k q_k p_k^T) + \rho_k p_k p_k^T$$

Reduced sampling noise

Same computational cost as o(L)BFGS + faster convergence

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient", Joint European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019

STOCHASTIC NESTEROV'S ACCELERATED QUASI-NEWTON

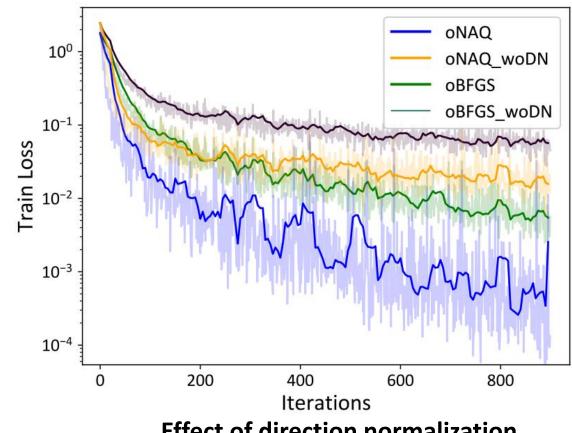
Direction Normalization

Further to improve the stability, direction normalization is introduced.

$$\widehat{\boldsymbol{g}}_k \leftarrow -\widehat{\boldsymbol{H}}_k \nabla \boldsymbol{E}(\boldsymbol{w}_k + \mu \boldsymbol{v}_k, \boldsymbol{X}_k)$$

$$\widehat{m{g}}_k = rac{\widehat{m{g}}_k}{\|\widehat{m{g}}_k\|_2}$$

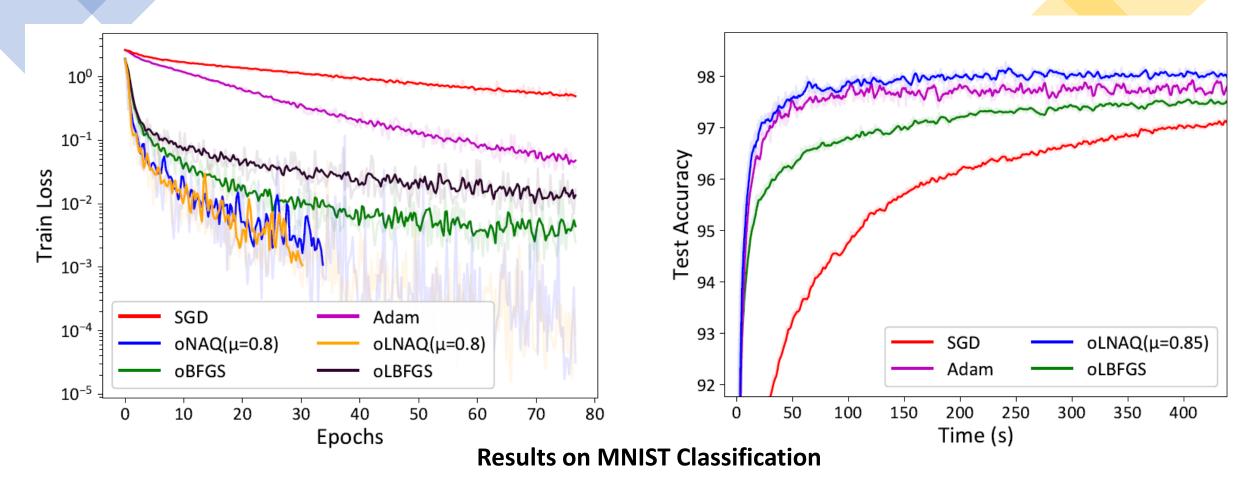
Normalizing the search direction at each iteration ensures that the algorithm does not move too far away from the current objective



Effect of direction normalization

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient", Joint European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019

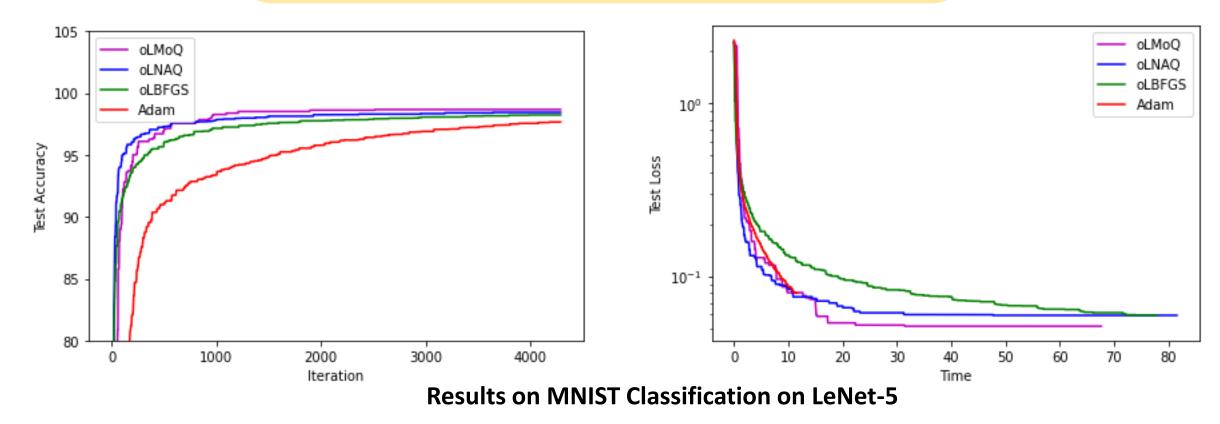
Stochastic Nesterov's Accelerated quasi-Newton - oNAQ



Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient", Joint European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019

Stochastic Momentum Accelerated quasi-Newton - oMoQ

$$\nabla E(\mathbf{w}_k + \mu \mathbf{v}_k) \approx (1 + \mu_k) \nabla E(\mathbf{w}_k) - \mu_k \nabla E(\mathbf{w}_{k-1})$$

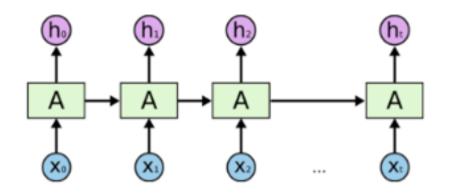


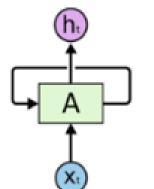
S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "A Stochastic Momentum Accelerated Quasi-Newton Method for Neural Networks (Student Abstract)", Proceedings of the 36th AAAI Conference on Artificial Intelligence, Feb 2022

Stochastic Momentum / Nesterov's Accelerated quasi-Newton

Summary of Computational Cost and Storage

	Algorithm	Computational Cost	Storage
	BFGS	$nd + d^2 + \zeta nd$	d^2
full batch	NAQ	$2nd + d^2 + \zeta nd$	d^2
	MoQ	$nd + d^2 + \zeta nd$	$d^2 + d$
11 b	LBFGS	$nd + 4md + 2d + \zeta nd$	2md
[I]	LNAQ	$2nd + 4md + 2d + \zeta nd$	2md
	LMoQ	$nd + 4md + 2d + \zeta nd$	(2m+1)d
	oBFGS	$2bd + d^2$	d^2
e	oNAQ	$2bd + d^2$	d^2
online	oMoQ	$bd + d^2$	$d^2 + d$
on	oLBFGS	2bd + 6md	2md
	oLNAQ	2bd + 6md	2md
	oLMoQ	bd + 6md	(2m+1)d

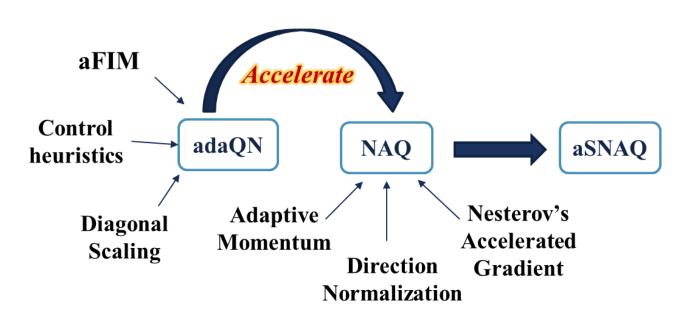




Recurrent Neural Networks

- Backpropagation through time
- Vanishing/exploding gradient
- Difficult training long sequences
- Suitable for dynamic problems

Builds on the algorithmic framework of SQN and adaQN



Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "An Adaptive Stochastic Nesterov's Accelerated Quasi-Newton Method for Training RNNs", Nonlinear Theory and its Applications, NOLTA, IEICE, 2019 (Best Student Paper Award)

Nesterov's Accelerated Gradient

Faster convergence by incorporating the Nesterov's accelerated gradient

$$g_k \leftarrow H_k \nabla E(w_k + \mu v_k)$$
Nesterov's Accelerated Gradient

Direction Normalization

Direction normalization scales the search direction in each iteration by its l_2 norm

$$\boldsymbol{g}_k = \frac{\boldsymbol{g}_k}{\|\boldsymbol{g}_k\|_2}$$

Initial Hessian scaling

$$[H_k^{(0)}]_{ii} = \frac{1}{\sqrt{\sum_{j=0}^k \nabla E(w_j)_i^2 + \varepsilon}}$$

Curvature information matrix

QN methods generate high-quality steps even with crude curvature information.

Fisher Information matrix (FIM) yields a better estimate of the curvature.

A FIFO memory buffer F of size m_F accumulates at each iteration the FIM as

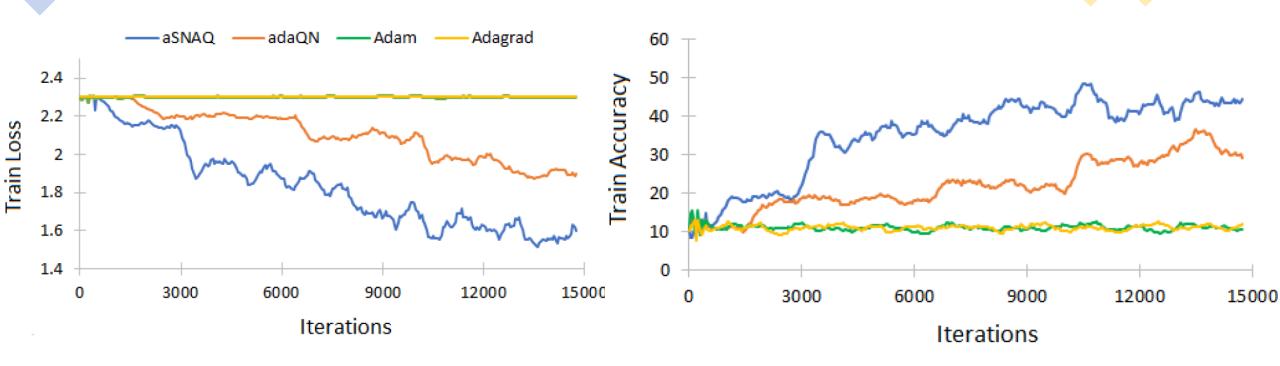
$$F_i = \nabla E(w_k) \nabla E(w_k)^T$$

This accumulated FIM is used in the computation of the y vector

$$\mathbf{y} \leftarrow \frac{1}{|F|} \left(\sum_{i=1}^{|F|} F_i \cdot \mathbf{s} \right)$$
 where $\mathbf{s} \leftarrow \mathbf{w}_n - \mathbf{w}_o$

Summary of Computational and Storage Cost.

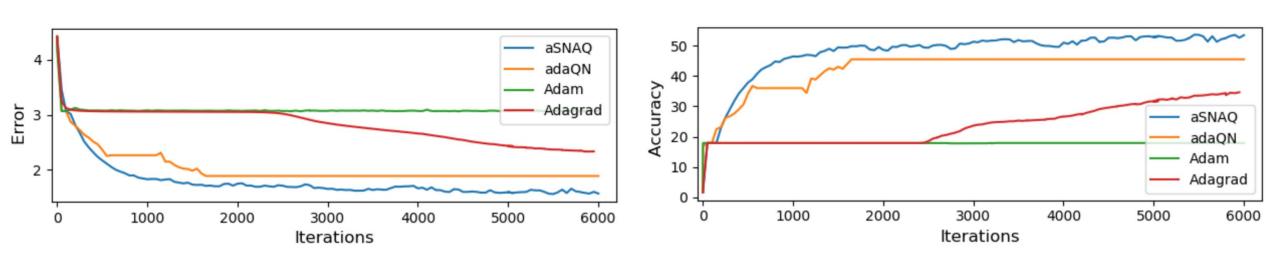
Algorithm	Computational Cost	Storage
BFGS	$nd + d^2 + \zeta nd$	d^2
NAQ	$2nd + d^2 + \zeta nd$	d^2
adaQN	$bd + (4m_L + m_F + 2)d + (b+4)d/L$	$(2m_L + m_F)d$
aSNAQ	$2bd + (4m_L + m_F + 3)d + (b+4)d/L$	$(2m_L + m_F)d$



Train loss and train accuracy of MNIST pixel-by-pixel sequence

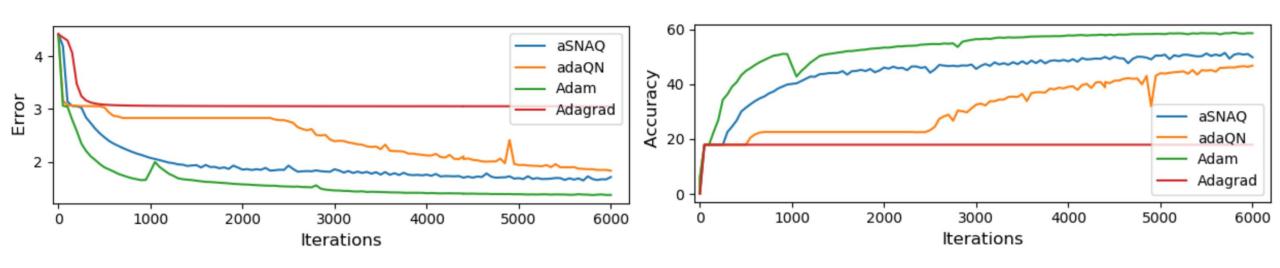
Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "An Adaptive Stochastic Nesterov's Accelerated Quasi-Newton Method for Training RNNs", Nonlinear Theory and its Applications, NOLTA, IEICE, 2019 (Best Student Paper Award)

Character Level Language modeling (5-layer RNN)

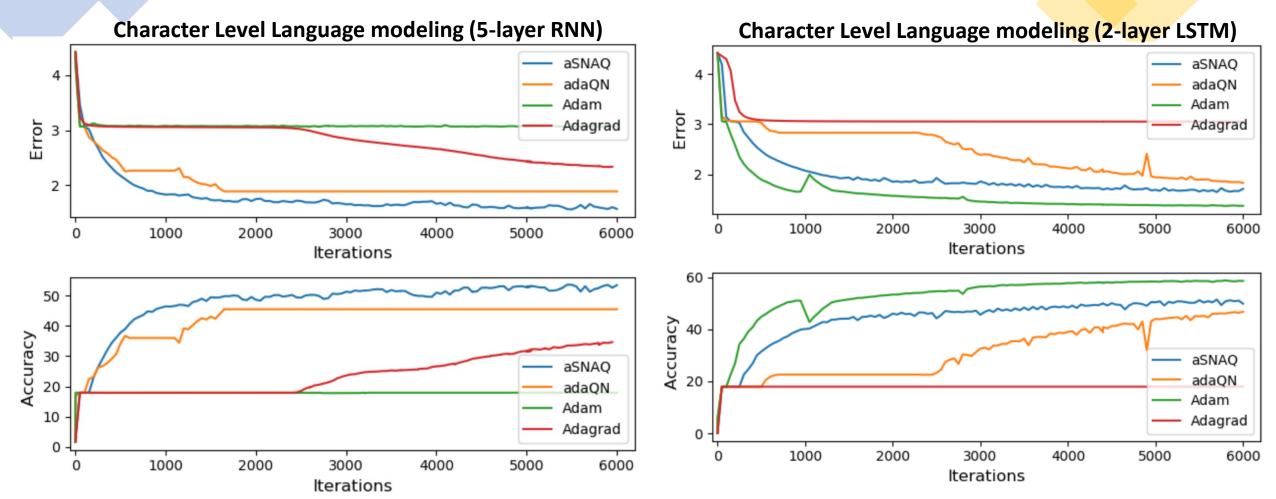


Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "An Adaptive Stochastic Nesterov's Accelerated Quasi-Newton Method for Training RNNs", Nonlinear Theory and its Applications, NOLTA, IEICE, 2019 (Best Student Paper Award) - (Extended paper – NOLTA journal IEICE, Oct 2020)

Character Level Language modeling (2-layer LSTM)



Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "An Adaptive Stochastic Nesterov's Accelerated Quasi-Newton Method for Training RNNs", Nonlinear Theory and its Applications, NOLTA, IEICE, 2019 (Best Student Paper Award) - (Extended paper – NOLTA journal IEICE, Oct 2020)



Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "An Adaptive Stochastic Nesterov's Accelerated Quasi-Newton Method for Training RNNs", Nonlinear Theory and its Applications, NOLTA, IEICE, 2019 (Best Student Paper Award) - (Extended paper — NOLTA journal IEICE, Oct 2020)

PCB ROUTING USING REINFORCEMENT LEARNING

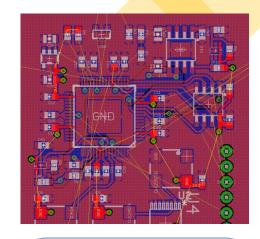
Synthesis and physical design optimizations are the core tasks of the VLSI / ASIC design flow. *Global routing* has been a challenging problem in IC physical design.

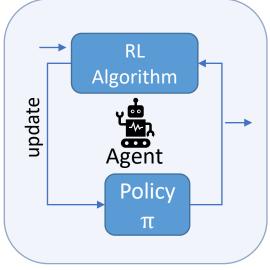
Objective

Given a netlist with the description of all the components, their connections and position, the goal of the global router is to determine the path of all the connections without violating the constraints and design rules.

- Route all pins and nets
- Minimize total wirelength (WL)
- Minimize total overflows

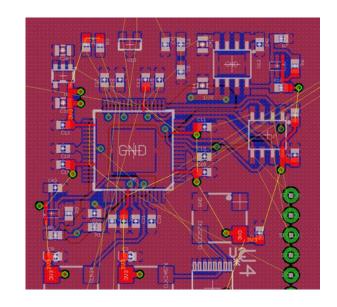
Conventional routing automation tools are usually based on analytical and path search algorithms which are **NP complete**.





S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "A Nesterov's Accelerated quasi-Newton method for Global Routing using Deep Reinforcement Learning", International Symposium on Nonlinear Theory and its Applications, NOLTA, IEICE, 2020 (Student Paper Award)

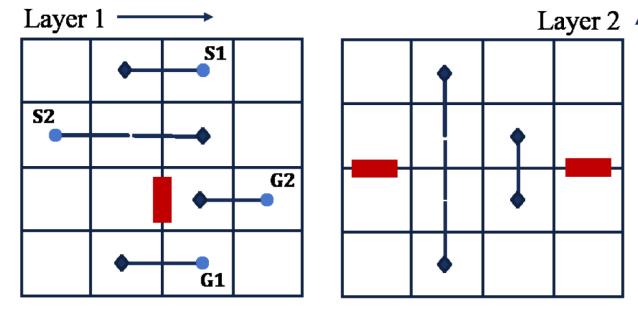
PCB ROUTING USING REINFORCEMENT LEARNING

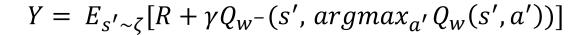


Objective function:

$$L(w) = E_{(s,a)\sim\zeta}[(Y - Q_w(s,a))^2]$$

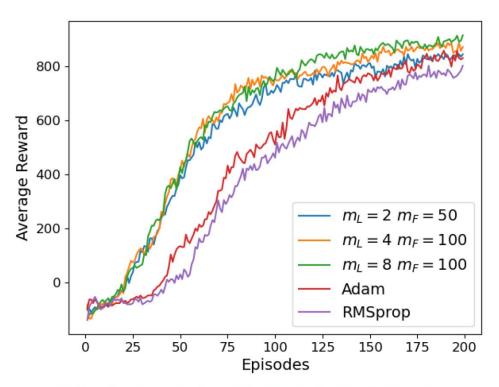
where





Key Takeaways

- In RL the training set is dynamically populated
- DQNs use mean-squared Bellman (non-convex function)
- Second order methods aSNAQ show better convergence



4000 3000 **Average Reward** 2000 1000 -1000aSNAQ $m_L = 8 m_F = 100$ Adam -2000**RMSprop** 10° 10¹ 10² 10³ **Episodes**

Fig. 4. Average reward over 25 benchmarks with 10 two-pin nets.

Fig. 5. Average reward over 30 benchmarks with 50 two-pin nets.

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "A Nesterov's Accelerated quasi-Newton method for Global Routing using Deep Reinforcement Learning", International Symposium on Nonlinear Theory and its Applications, NOLTA, IEICE, 2020 (Student Paper Award) - (Extended paper – NOLTA journal IEICE, Jul 2021)

Total 50 Netlists Max episode $\varepsilon = 500$

indicates could not be routed within 500 episodes
 diff is wirelength reduction compared to A*

Trial	A*			Adam					RMSprop					aSNAQ		
Num	WL	WL	diff	\mathcal{R}_{best}	${\cal B}$	Pins	WL	diff	\mathcal{R}_{best}	3	Pins	WL	diff	\mathcal{R}_{best}	${\cal S}$	Pins
1	390	-	-	4386	465	48	-	-	4363	490	48	368	-22	4667	231	50
2	386	-	-	4505	399	49	-	-	4513	483	49	376	-10	4610	148	50
3	379	-	-	4234	478	47	-	-	4533	401	49	-	-	4382	344	48
4	369	348	-21	4690	288	50	350	-19	4685	492	50	345	-24	4699	75	50
5	366	362	-4	4679	422	50	361	-5	4681	430	50	369	+3	4656	458	50
6	352	348	-4	4691	437	50	344	-8	4697	296	50	335	-17	4701	157	50
7	430	-	-	4053	485	46	-	-	4322	393	48	-	-	4324	285	48
8	398	-	-	4522	205	49	-	-	4513	455	49	377	-21	4663	361	50
9	369	369	0	4669	497	50	347	-22	4687	252	50	348	-21	4693	189	50
10	366	359	-7	4674	112	50	375	+9	4660	327	50	357	-9	4683	480	50
11	379	380	+1	4660	252	50	380	+1	4658	429	50	-	-	4523	428	49
12	351	346	-5	4692	293	50	351	0	4689	340	50	348	-3	4692	93	50
13	395	411	+16	4616	456	50	397	+2	4645	422	50	394	-1	4640	193	50
14	340	343	+3	4700	409	50	338	-2	4706	381	50	341	+1	4699	49	50
15	375	374	-1	4659	319	50	384	9	4660	313	50	371	-4	4668	490	50

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "A Nesterov's Accelerated quasi-Newton method for Global Routing using Deep Reinforcement Learning", International Symposium on Nonlinear Theory and its Applications, NOLTA, IEICE, 2020 (Student Paper Award) - (Extended paper – NOLTA journal IEICE, Jul 2021)

OTHER QUASI-NEWTON METHOD + NESTEROV'S ACCELERATION?

Method	$B_{k+1}=$	$H_{k+1} = B_{k+1}^{-1} = % egin{subarray}{cccccccccccccccccccccccccccccccccccc$
BFGS	$oxed{B_k + rac{y_k y_k^{ ext{T}}}{y_k^{ ext{T}} \Delta x_k} - rac{B_k \Delta x_k (B_k \Delta x_k)^{ ext{T}}}{\Delta x_k^{ ext{T}} B_k \Delta x_k}}$	$\left(I - rac{\Delta x_k y_k^{\mathrm{T}}}{y_k^{\mathrm{T}} \Delta x_k} ight) H_k \left(I - rac{y_k \Delta x_k^{\mathrm{T}}}{y_k^{\mathrm{T}} \Delta x_k} ight) + rac{\Delta x_k \Delta x_k^{\mathrm{T}}}{y_k^{\mathrm{T}} \Delta x_k}$
Broyden	$oxed{B_k + rac{y_k - B_k \Delta x_k}{\Delta x_k^{\mathrm{T}} \Delta x_k} \Delta x_k^{\mathrm{T}}}$	$H_k + rac{(\Delta x_k - H_k y_k) \Delta x_k^{\mathrm{T}} H_k}{\Delta x_k^{\mathrm{T}} H_k y_k}$
Broyden family	$oxed{(1-arphi_k)B_{k+1}^{ ext{BFGS}}+arphi_kB_{k+1}^{ ext{DFP}}, arphi\in[0,1]}$	
DFP	$\left(I - rac{y_k \Delta x_k^{\mathrm{T}}}{y_k^{\mathrm{T}} \Delta x_k} ight) B_k \left(I - rac{\Delta x_k y_k^{\mathrm{T}}}{y_k^{\mathrm{T}} \Delta x_k} ight) + rac{y_k y_k^{\mathrm{T}}}{y_k^{\mathrm{T}} \Delta x_k}$	$H_k + rac{\Delta x_k \Delta x_k^{\mathrm{T}}}{\Delta x_k^{\mathrm{T}} y_k} - rac{H_k y_k y_k^{\mathrm{T}} H_k}{y_k^{\mathrm{T}} H_k y_k}$
SR1	$B_k + rac{(y_k - B_k \Delta x_k)(y_k - B_k \Delta x_k)^{\mathrm{T}}}{(y_k - B_k \Delta x_k)^{\mathrm{T}} \Delta x_k}$	$H_k + rac{(\Delta x_k - H_k y_k)(\Delta x_k - H_k y_k)^{\mathrm{T}}}{(\Delta x_k - H_k y_k)^{\mathrm{T}} y_k}$

*Wikipedia

ACCELERATING SR1 WITH NESTEROV'S GRADIENT

- Quasi-Newton + Nesterov's acceleration satisfies secant condition
- The Hessian is updated using the Symmetric rank-1 update formula given as

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{(\mathbf{s}_k - \mathbf{H}_k \mathbf{y}_k)(\mathbf{s}_k - \mathbf{H}_k \mathbf{y}_k)^T}{(\mathbf{s}_k - \mathbf{H}_k \mathbf{y}_k)^T \mathbf{y}_k},$$

where,

$$\mathbf{y}_k = \nabla E(\mathbf{w}_{k+1}) - \nabla E(\mathbf{w}_k + \mu_k \mathbf{v}_k)$$
 and $\mathbf{s}_k = \mathbf{w}_{k+1} - (\mathbf{w}_k + \mu_k \mathbf{v}_k)$

Ensure positive semi-definiteness by performing the update only if

$$|\mathbf{s}_k^T(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)| \ge \rho ||\mathbf{s}_k|| ||\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k||$$

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov's Gradient", Algorithms 2022, 15(1), 6;

ACCELERATING SR1 WITH NESTEROV'S GRADIENT: CONVERGENCE

Assumption 1: The sequence of iterates \mathbf{w}_k and $\mathbf{\hat{w}}_k$ remains in the closed and bounded set $\mathbf{\Omega}$ on which the objective function is twice continuously differentiable and has Lipschitz continuous gradient, i.e. there exists a constant L > 0 such that

$$||\nabla E(\mathbf{w}_{k+1}) - \nabla E(\hat{\mathbf{w}}_k)|| \leq L||\mathbf{w}_{k+1} - \hat{\mathbf{w}}_k|| \quad \forall \; \mathbf{w}_{k+1}, \; \hat{\mathbf{w}}_k \in \mathbb{R}^d$$

If Assumption 1 holds true, then it implies that the objective function satisfies,

$$E(\mathbf{w}_{k+1}) \le E(\mathbf{w}_k + \mu \mathbf{v}_k) + \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k)^T \mathbf{d} + \frac{L}{2} \|\mathbf{w}_{k+1} - (\mathbf{w}_k + \mu \mathbf{v}_k)\|_2^2$$

Assumption 2: The Hessian matrix is bounded and well-defined, i.e., there exists constants ρ and M, such that

$$\rho \leq ||\mathbf{B}_k|| \leq M \quad \forall k$$

and for each iteration

$$|\mathbf{s}_k^T(\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k)| \ge \rho ||\mathbf{s}_k|| ||\mathbf{y}_k - \mathbf{B}_k \mathbf{s}_k||$$

Assumption 2 ensures Hessian matrix is symmetric positive semidefinite and bounded

ACCELERATING SR1 WITH NESTEROV'S GRADIENT: CONVERGENCE

Assumption 3: Let \mathbf{B}_k be any $n \times n$ symmetric matrix and \mathbf{s}_k be an optimal solution to the trust region subproblem,

$$\min_{\mathbf{d}} \ m_k(\mathbf{d}) = E(\hat{\mathbf{w}}_k) + \mathbf{d}^T \nabla E(\hat{\mathbf{w}}_k) + \frac{1}{2} \mathbf{d}^T \mathbf{B}_k \mathbf{d},$$

where $\hat{\mathbf{w}}_k + \mathbf{d}$ lies in the trust region. Then for all $k \geq 0$,

$$\left|\nabla E(\mathbf{\hat{w}}_k)^T \mathbf{s}_k + \frac{1}{2} \mathbf{s}_k^T \mathbf{B}_k \mathbf{s}_k\right| \geq \frac{1}{2} \left|\left|\nabla E(\mathbf{\hat{w}}_k)\right|\right| \min \left\{ \Delta_k, \frac{\left|\left|\nabla E(\mathbf{\hat{w}}_k)\right|\right|}{\left|\left|\mathbf{B}_k\right|\right|} \right\}$$

Assumption 3 ensures that the subproblem solved by the trust region method is sufficiently optimal at each iteration.

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov's Gradient", Algorithms 2022, 15(1), 6;

ACCELERATING SR1 WITH NESTEROV'S GRADIENT: CONVERGENCE

Lemma: If Assumptions 1 to 3 holds true, and s_k be an optimal solution to the trust region subproblem, and if the initial Hessian $H_{k+1} = \gamma_k$ is bounded (i.e., $0 \le \gamma_k \le \hat{\gamma}_k$) then for all $k \ge 0$, the Hessian update given by the SR1+N algorithm is bounded

$$\left|\left|\mathbf{B}_{k+1}\right|\right| \leq \left(1 + \frac{1}{\rho}\right)^{m_L} \gamma_k + \left[\left(1 + \frac{1}{\rho}\right)^{m_L} - 1\right] M$$

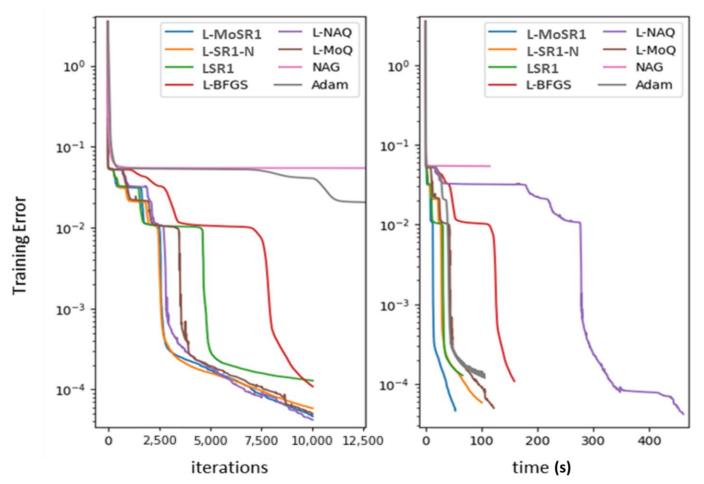
Theorem: Given a level set $\Omega = \{ w \in \mathbb{R}^d : E(w) < E(w_0) \}$ that is bounded, let $\{ w_k \}$ be the sequence of iterates generated by the SR1+N algorithm. If *Assumptions 1 to 3* holds true, then,

$$\lim_{k\to\infty}||\nabla E(\mathbf{w}_k)||=0.$$

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov's Gradient", Algorithms 2022, 15(1), 6;

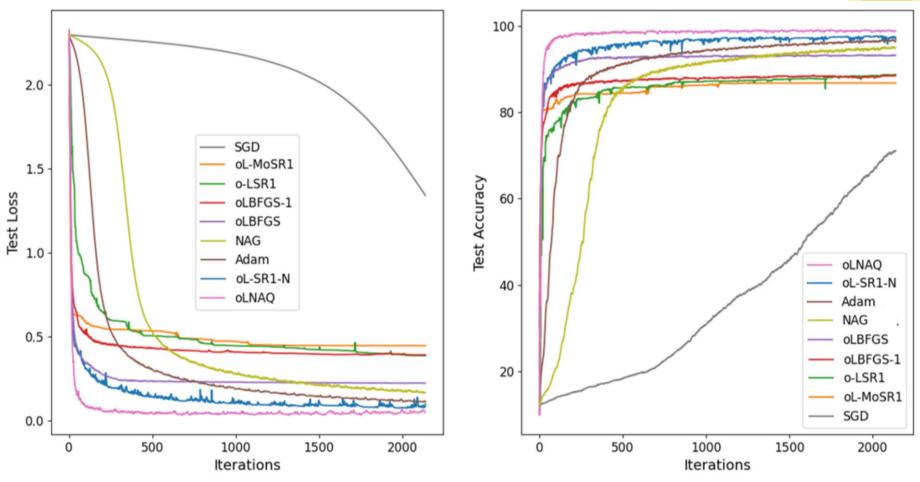
SR1 + NESTEROV'S ACCELERATION (FULL BATCH)

Average results on levy function approximation problem with mL=10 (full batch).



S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov's Gradient", Algorithms 2022, 15(1), 6;

SR1 + NESTEROV'S ACCELERATION (STOCHASTIC)

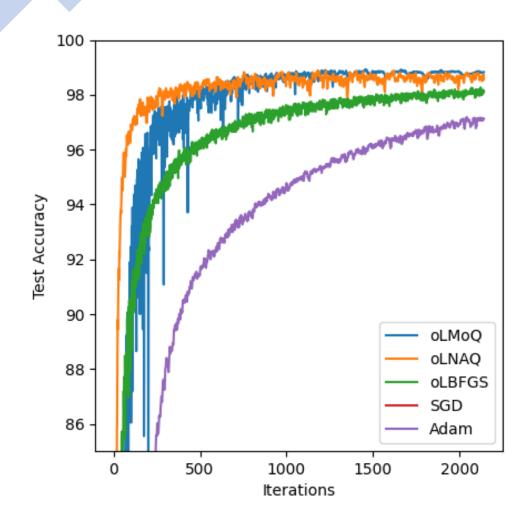


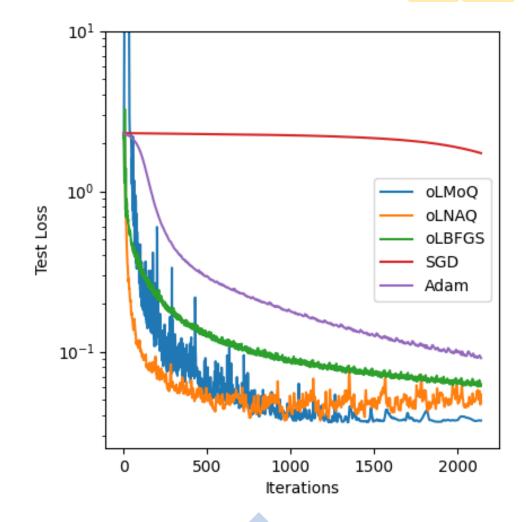
Results of MNIST on LeNet-5 architecture with b=256 and mL=8.

S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai, "Accelerating Symmetric Rank 1 Quasi-Newton Method with Nesterov's Gradient", Algorithms 2022, 15(1), 6;

NEXT ...

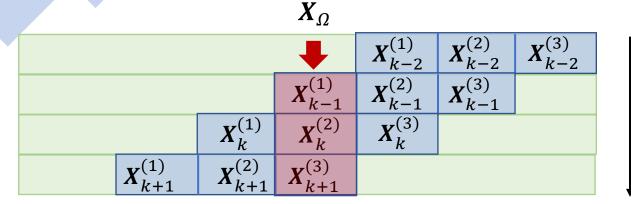
Future Work: oLMoQ stochastic noise reduction





Multi-batch strategy → to MoQ

+ distributed



1

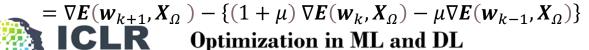
Socials

$$X_{\Omega}$$

$$\nabla E(\mathbf{w}_k, \mathbf{X}_k) = \frac{1}{n} \sum_{i=1}^n \nabla E(\mathbf{w}_k, \mathbf{X}_i)$$
 where $\mathbf{X}_i \in \mathbf{T}$

$$= \underbrace{\frac{1}{3n} \sum_{i=1}^{n/3} \nabla E(\mathbf{w}_k, \mathbf{X}_i)}_{\mathbf{X}_k^{(1)}} + \underbrace{\frac{1}{3n} \sum_{i=n/3}^{2n/3} \nabla E(\mathbf{w}_k, \mathbf{X}_i)}_{\mathbf{X}_k^{(2)}} + \underbrace{\frac{1}{3n} \sum_{i=2n/3}^{n} \nabla E(\mathbf{w}_k, \mathbf{X}_i)}_{\mathbf{X}_k^{(3)}}$$

$$\boldsymbol{y}_{k} = \nabla \boldsymbol{E}\left(\boldsymbol{w}_{k+1}, \boldsymbol{X}_{k+1}^{(3)}\right) - \left\{ (1 + \mu) \ \nabla \boldsymbol{E}\left(\boldsymbol{w}_{k}, \boldsymbol{X}_{k}^{(2)}\right) - \mu \nabla \boldsymbol{E}\left(\boldsymbol{w}_{k-1}, \boldsymbol{X}_{k-1}^{(1)}\right) \right\}$$



A discussion on theory and practice

Algorithm 4 oBFGS Method

Require: minibatch X_k , k_{max} and $\lambda \ge 0$,

Initialize: $\mathbf{w}_k \in \mathbb{R}^d$, $\mathbf{H}_k = \epsilon \mathbf{I}$ and $\mathbf{v}_k = 0$

- 1: $k \leftarrow 1$
- 2: while $k < k_{max}$ do
- 3: $\nabla \mathbf{E}_1 \leftarrow \nabla E(\mathbf{w}_k, X_k)$ 4: $\mathbf{g}_k \leftarrow -\mathbf{H}_k \nabla E(\mathbf{w}_k, X_k)$
- 5: $\mathbf{g}_k = \mathbf{g}_k / ||\mathbf{g}_k||_2$
- 5: Determine α_k using (12)
- 7: V_{k+1} ← α_kg_k
- 8: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \mathbf{v}_{k+1}$
- 9: $\nabla \mathbf{E}_2 \leftarrow \nabla E(\mathbf{w}_{k+1}, X_k)$
- $0: \quad \mathbf{s}_k \leftarrow \mathbf{w}_{k+1} \mathbf{w}_k$
- 11: $\mathbf{y}_k \leftarrow \nabla \mathbf{E}_2 \nabla \mathbf{E}_1 + \lambda \mathbf{s}_k$
- 12: Update H_k using (4)
- 13: $k \leftarrow k+1$
- 14: end while

Algorithm 5 Proposed oNAQ Method

Require: minibatch X_k , $0 < \mu < 1$ and k_{max}

Initialize: $\mathbf{w}_k \in \mathbb{R}^d$, $\hat{\mathbf{H}}_k = \epsilon \mathbf{I}$ and $\mathbf{v}_k = 0$

- 1: $k \leftarrow 1$
- 2: while $k < k_{max}$ do
- 3: $\nabla \mathbf{E}_1 \leftarrow \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k, X_k)$ 4: $\hat{\mathbf{g}}_k \leftarrow -\mathbf{H}_k \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k, X_k)$
- 5: $\hat{\mathbf{g}}_k = \hat{\mathbf{g}}_k / ||\hat{\mathbf{g}}_k||_2$
- 6: Determine α_k using (17)
- 7: $\mathbf{v}_{k+1} \leftarrow \mu \mathbf{v}_k + \alpha_k \hat{\mathbf{g}}_k$
- 8: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \mathbf{v}_{k+1}$
- 9: $\nabla \mathbf{E}_2 \leftarrow \nabla E(\mathbf{w}_{k+1}, X_k)$ 10: $\mathbf{p}_k \leftarrow \mathbf{w}_{k+1} - (\mathbf{w}_k + \mu \mathbf{v}_k)$
- 1: $\mathbf{q}_k \leftarrow \nabla \mathbf{E}_2 \nabla \mathbf{E}_1 + \lambda \mathbf{p}_k$
- 11: $\mathbf{q}_k \leftarrow \nabla \mathbf{E}_2 \nabla \mathbf{E}_1 + \lambda \mathbf{p}_k$ 12: Update $\hat{\mathbf{H}}_k$ using (9)
- 13: $k \leftarrow k + 1$
- 14: end while

Algorithm 1: Stochastic MoQ

Require: learning rate schedule, $0 < \mu < 1$ and k_{max}

Ensure: $\mathbf{w}_k \in \mathbb{R}^d$, $\mathbf{H}_k = \epsilon \mathbf{I}$ and $\mathbf{v}_k = 0$

- 1: Calculate $\nabla \mathbf{E}(\mathbf{w}_k, X_k)$
- 2: while $||\nabla \mathbf{E}(\mathbf{w}_k)|| > \epsilon$ and $k < k_{\text{max}}$ do
- 3: Determine learning rate α_k
- 4: $\nabla \mathbf{E}_1 = (\underline{1} + \underline{\mu}) \nabla \mathbf{E}(\mathbf{w}_k, X_k) \underline{\mu} \nabla \mathbf{E}(\mathbf{w}_{k-1}, X_{k-1})$
- 5: $\mathbf{g}_k \leftarrow -\mathbf{H}_k \nabla \mathbf{E}_1$
- 6: $\mathbf{g}_k = \mathbf{g}_k / ||\mathbf{g}_k||_2$
- 7: $\mathbf{v}_{k+1} \leftarrow \mu \mathbf{v}_k + \alpha_k \mathbf{g}_k$
- 8: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \mathbf{v}_{k+1}$
- 9: Store $\nabla \mathbf{E}(\mathbf{w}_k, X_k)$
- 10: Select mini-batch X_{k+1}
- 11: Calculate $\nabla \mathbf{E}_2 = \nabla \mathbf{E}(\mathbf{w}_{k+1}, X_{k+1})$
- 12: $\mathbf{s}_k \leftarrow \mathbf{w}_{k+1} (\mathbf{w}_k + \mu \mathbf{v}_k)$
- 13: $\mathbf{y}_k \leftarrow \nabla \mathbf{E}_2 \nabla \mathbf{E}_1 + \lambda \mathbf{s}_k$
- 14: Update \mathbf{H}_k using (10)
- 15: end while

Contact

Indra Priyadarsini S

Graduate School of Science and Technology Shizuoka University

indra.ipd@gmail.com

Stochastic Nesterov's Accelerated quasi-Newton - oNAQ

Algorithm 4 oBFGS Method

Require: minibatch X_k , k_{max} and $\lambda \ge 0$, **Initialize:** $\mathbf{w}_k \in \mathbb{R}^d$, $\mathbf{H}_k = \epsilon \mathbf{I}$ and $\mathbf{v}_k = 0$

- 1: $k \leftarrow 1$
- 2: while $k < k_{max}$ do
- 3: $\nabla \mathbf{E}_1 \leftarrow \nabla E(\mathbf{w}_k, X_k)$
- 4: $\mathbf{g}_k \leftarrow -\mathbf{H}_k \nabla E(\mathbf{w}_k, X_k)$
- 5: $\mathbf{g}_k = \mathbf{g}_k / ||\mathbf{g}_k||_2$
- 6: Determine α_{ν} using (12)
- 7: $\mathbf{v}_{k+1} \leftarrow \alpha_k \mathbf{g}_k$
- 8: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \mathbf{v}_{k+1}$
- 9: $\nabla \mathbf{E}_2 \leftarrow \nabla E(\mathbf{w}_{k+1}, X_k)$
- 10: $\mathbf{s}_k \leftarrow \mathbf{w}_{k+1} \mathbf{w}_k$
- 11: $\mathbf{y}_k \leftarrow \nabla \mathbf{E}_2 \nabla \mathbf{E}_1 + \lambda \mathbf{s}_k$
- 12: Update \mathbf{H}_k using (4)
- 13: $k \leftarrow k+1$
- 14: end while

Algorithm 5 Proposed oNAQ Method

Require: minibatch X_k , $0 < \mu < 1$ and k_{max} Initialize: $\mathbf{w}_k \in \mathbb{R}^d$, $\hat{\mathbf{H}}_k = \epsilon \mathbf{I}$ and $\mathbf{v}_k = 0$

- 1: $k \leftarrow 1$
- 2: while $k < k_{max}$ do
- 3: $\nabla \mathbf{E}_1 \leftarrow \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k, X_k)$
- 4: $\hat{\mathbf{g}}_k \leftarrow -\hat{\mathbf{H}}_k \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k, X_k)$
- 5: $\hat{\mathbf{g}}_k = \hat{\mathbf{g}}_k / ||\hat{\mathbf{g}}_k||_2$
- 6: Determine α_k using (17)
- 7: $\mathbf{v}_{k+1} \leftarrow \mu \mathbf{v}_k + \alpha_k \hat{\mathbf{g}}_k$
- 8: $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \mathbf{v}_{k+1}$
- 9: $\nabla \mathbf{E}_2 \leftarrow \nabla E(\mathbf{w}_{k+1}, X_k)$
- 10: $\mathbf{p}_k \leftarrow \mathbf{w}_{k+1} (\mathbf{w}_k + \mu \mathbf{v}_k)$
- 11: $\mathbf{q}_k \leftarrow \nabla \mathbf{E}_2 \nabla \mathbf{E}_1 + \lambda \mathbf{p}_k$
- 12: Update $\hat{\mathbf{H}}_k$ using (9)
- 13: $k \leftarrow k+1$
- 14: end while

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient", Joint European Conference on Machine Learning and Principles of Knowledge Discovery in Databases, ECML-PKDD, Springer, 2019


```
if t > 0 then
                                                                                                                         13:
Algorithm 2 Proposed method - aSNAQ
                                                                                                                                                if E(\mathbf{w}_n) > \gamma E(\mathbf{w}_o) then
                                                                                                                         14:
Require: minibatch X_k, \mu_{min}, \mu_{max}, k_{max}, aFIM buffer F of
                                                                                                                                                      Clear (S, Y) and F buffers
                                                                                                                         15:
                                                                                                                                                      Reset \mathbf{w}_k = \mathbf{w}_o and \mathbf{v}_k = \mathbf{v}_o
       size m_F and curvature pair buffer (S, Y) of size m_L,
                                                                                                                         16:
                                                                                                                                                      Update \mu = \max(\mu/\phi, \mu_{min})
                                                                                                                         17:
       momentum update factor \phi
                                                                                                                                                      continue
                                                                                                                         18:
Initialize: \mathbf{w}_k \in \mathbb{R}^d, \mu = \mu_{min}, \mathbf{v}_k, \mathbf{w}_o, \mathbf{v}_o, \mathbf{w}_s, \mathbf{v}_s, k \& t = 0
                                                                                                                                                end if
                                                                                                                         19:
  1: while k < k_{max} do
                                                                                                                         20:
                                                                                                                                                \mathbf{s} = \mathbf{w}_n - \mathbf{w}_o
             Calculate \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k)
                                                                                                                         21:
             Determine \mathbf{g}_k using Algorithm 1
  3:
                                                         ▶ Direction normalization
             \mathbf{g}_k = \mathbf{g}_k / ||\mathbf{g}_k||_2
                                                                                                                                                Update \mu = \min(\mu \cdot \phi, \mu_{max})
                                                                                                                         22:
                                                                                                                                                if \mathbf{s}^T \mathbf{v} > \epsilon \cdot \mathbf{v}^T \mathbf{v} then
                                                                                                                         23:
  5:
            \mathbf{v}_{k+1} \leftarrow \mu \mathbf{v}_k + \alpha_k \mathbf{g}_k
                                                                                                                                                      Store curvature pairs (s, v) in (S, Y)
                                                                                                                         24:
            \mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \mathbf{v}_{k+1}
                                                                                                                                                end if
                                                                                                                         25:
             Calculate \nabla E(\mathbf{w}_{k+1}) and store in F
  7:
                                                                                                                                          end if
                                                                                                                         26:
  8:
             \mathbf{w}_{s} = \mathbf{w}_{s} + \mathbf{w}_{k}
                                                                                                                                          Update \mathbf{w}_o = \mathbf{w}_n and \mathbf{v}_o = \mathbf{v}_n
                                                                                                                         27:
  9:
            \mathbf{v}_{s} = \mathbf{v}_{s} + \mathbf{v}_{k}
                                                                                                                                          t \leftarrow t + 1
                                                                                                                         28:
             if mod(k, L) = 0 then
 10:
                                                                                                                                    end if
                                                                                                                         29:
                    Compute average \mathbf{w}_n = \mathbf{w}_s/L and \mathbf{v}_n = \mathbf{v}_s/L
11:
                                                                                                                                    k \leftarrow k + 1
                                                                                                                         30:
                                                                                                                         31: end while
                    \mathbf{w}_s = 0 and \mathbf{v}_s = 0
 12:
```

Indrapriyadarsini S., Shahrzad Mahboubi, Hiroshi Ninomiya, and Hideki Asai. "An Adaptive Stochastic Nesterov's Accelerated Quasi-Newton Method for Training RNNs", Nonlinear Theory and its Applications, NOLTA, IEICE, 2019

DERIVATION OF NAQ

- $\mathbf{w}_{k+1} = (\mathbf{w}_k + \mu \mathbf{v}_k) \nabla^2 E(\mathbf{w}_k + \mu \mathbf{v}_k)^{-1} \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k) \qquad \dots$
 - ... (Eq. **12**)

- By approximation of the Hessian $\nabla^2 E(\mathbf{w}_k + \mu \mathbf{v}_k)$ using $\widehat{\mathbf{B}}_{k+1}$,
- Secant Condition

$$\mathbf{q}_k = \widehat{\mathbf{B}}_{k+1} \mathbf{p}_k \qquad \dots (Eq. \, \mathbf{13})$$

$$\mathbf{p}_k = \mathbf{w}_{k+1} - (\mathbf{w}_k + \mu \mathbf{v}_k), \qquad \mathbf{q}_k = \nabla E(\mathbf{w}_{k+1}) - \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k)$$

- From secant condition the rank-2 updating formula of this matrix is derived as follows:
- The update formula of $\widehat{\boldsymbol{B}}_{k+1}$ >
 - The matrix $\widehat{{\pmb B}}_{k+1}$ is defined using arbitrary vectors ${f x}$ and ${f y}$ and constants a and b as

$$\widehat{\boldsymbol{B}}_{k+1} = \widehat{\boldsymbol{B}}_k + \widehat{\boldsymbol{B}}_k + a\mathbf{x}\mathbf{x}^{\mathrm{T}} + b\mathbf{y}\mathbf{y}^{\mathrm{T}} \qquad ... (Eq. 14)$$

APPENDIX

By substituting (14) into the secant condition, arbitrary vectors \mathbf{x} and \mathbf{y} and constants a and b are obtained as

$$\mathbf{x} = \mathbf{q}_k$$
, $\mathbf{y} = -\widehat{\mathbf{B}}_k \mathbf{p}_k$ and $a = 1/\mathbf{x}^T \mathbf{p}_k$, $b = 1/\mathbf{y}^T \mathbf{p}_k$... $(Eq. 15)$

As a result, the rank-2 updating formula for NAQ can be obtained as

$$\widehat{\boldsymbol{B}}_{k+1} = \widehat{\boldsymbol{B}}_k + \mathbf{q}_k \mathbf{q}_k^{\mathrm{T}} / \mathbf{q}_k^{\mathrm{T}} \mathbf{p}_k - \widehat{\boldsymbol{B}}_k \mathbf{p}_k \mathbf{p}_k^{\mathrm{T}} \widehat{\boldsymbol{B}}_k / \mathbf{p}_k^{\mathrm{T}} \widehat{\boldsymbol{B}}_k \mathbf{p}_k \qquad \dots (Eq. 16)$$

- Convergence properties of NAQ -> Proof is omitted here.
- a. $\widehat{\boldsymbol{B}}_{k+1}$ of (16) satisfies the secant condition $\mathbf{q}_k = \widehat{\boldsymbol{B}}_{k+1} \mathbf{p}_k$.
- b. If $\widehat{\boldsymbol{B}}_k$ is symmetry, $\widehat{\boldsymbol{B}}_{k+1}$ is also symmetry.
- c. If $\widehat{\boldsymbol{B}}_k$ is the positive definite matrix, $\widehat{\boldsymbol{B}}_{k+1}$ is also the positive definite.

Modified Nesterov's Accelerated quasi-Newton - mNAQ

1) Incorporating an additional $\hat{\xi}_k p_k$ term for global convergence

$$\begin{aligned} p_k &= w_{k+1} - (w_k + \mu v_k) \\ q_k &= \nabla E(w_{k+1}) - \nabla E(w_k + \mu v_k) + \hat{\xi}_k p_k = \varepsilon_k + \hat{\xi}_k p_k \\ &\hat{\xi}_k = \omega \|\nabla E(w_k + \mu v_k)\| + \max\left\{-\frac{\varepsilon_k^T p_k}{\|p_k\|^2}, 0\right\} \end{aligned} \qquad \text{global convergence term}$$

$$\begin{cases} \omega &= 2 & \text{if } \|\nabla E(w_k + \mu v_k)\|^2 > 10^{-2} \\ \omega &= 100 & \text{if } \|\nabla E(w_k + \mu v_k)\|^2 < 10^{-2} \end{cases}$$

$$\widehat{H}_{k+1} = (I - \rho_k p_k q_k^T) \widehat{H}_k (I - \rho_k q_k p_k^T) + \rho_k p_k p_k^T \qquad \dots (Eq. 11)$$

Modified Nesterov's Accelerated quasi-Newton - mNAQ

2) Eliminating linesearch

Determine step size α_k using the explicit formula

$$\alpha_k = -\frac{\delta \nabla E(w_k + \mu v_k)^T \widehat{g}_k}{\|\widehat{g}_k\|^2_{Q_k}} \dots (Eq. 12)$$

Armijo Linesearch Condition:

$$E(\mathbf{w}_k + \mu \mathbf{v}_k + \alpha_k \mathbf{g}_k) \le E(\mathbf{w}_k + \mu \mathbf{v}_k) + \mu \mathbf{v}_k$$

$$\eta \alpha_k \nabla E(\mathbf{w}_k + \mu \mathbf{v}_k)^T \mathbf{g}_k$$

