
CodeBPE:

Investigating Subtokenization Options

for Large Language Models

Pretrained on Source Code

Nadezhda Chirkova

Naver Labs Europe*

Sergey Troshin

University of Amsterdam*

* Work done at HSE University

TLDR: carefully choosing
tokenization in LLMs

for code is important!

/532

Pretrained language models (PLMs)

self-supervised
pretraining supervised

finetuning

Final model

• Learn domain specifics from large
code corpora during pretraining

• Often outperform models developed
specifically for applied tasks

Task-specific
data

BERT

/533

PLM pipeline
FreqLists = [[0, 0] for i in range(vocSz)]

Freq List s = [[0 , 0] for i in range (vo c S z)]

Masked Language Modeling

objective (or other)

Task-specific objective

pretraining finetuning

subtoken segmentation

/53

Existing work: investigation of models and pretraining objectives:

• CodeBERT (Feng20), CuBERT (Kanade20)

• CodeGPT (Lu21)

• PLBART (Ahmad21)

• GraphCodeBERT (Guo21) with data flow prediction objective

• CodeT5 (Wang21b) with variable naming and identifier tagging objectives

• DOBF (Roziere21) with variable naming objective

Our work considers another dimension: subtokenization options

4

Research on PLMs for Code

(e. g. BPE vocabulary size or BPE vs UnigramLM)

Overview
Main goals:

• choose the most effective subtokenization (maximize downstream performance)

• choose the most length-efficient subtokenization without downstream performance drop

Сonsidered options:

• Subtokenization granularity

• UnigramLM vs BPE

• Vocabulary size

• Transferability between

programming languages

Downstream tasks:

• Code translation

• Code summarization

• Code generation

• Clone detection

Methodology: start from UnigramLM (50k vocab) and add one modification at a time
All experiments with PLBART

Subtokenization granularity
Various levels of including spaces and punctuation in tokens:

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Subtokenizer CT1

(Py)

CT1

(Ja)

CT2

(Py)

CT2

(Ja)

CS

(Py)

CS

(Ja)

CG

(Ja)

CD

(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Subtokenizer CT1

(Py)

CT1

(Ja)

CT2

(Py)

CT2

(Ja)

CS

(Py)

CS

(Ja)

CG

(Ja)

CD

(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Subtokenization granularity

conventionally
used

Various levels of including spaces and punctuation in tokens:

Subtokenization granularity

allow
merging of
punctuation

chars

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Subtokenizer CT1

(Py)

CT1

(Ja)

CT2

(Py)

CT2

(Ja)

CS

(Py)

CS

(Ja)

CG

(Ja)

CD

(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Various levels of including spaces and punctuation in tokens:

Subtokenization granularity

+ allow
merging of

dots with text

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Subtokenizer CT1

(Py)

CT1

(Ja)

CT2

(Py)

CT2

(Ja)

CS

(Py)

CS

(Ja)

CG

(Ja)

CD

(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Various levels of including spaces and punctuation in tokens:

Subtokenization granularity

allow spaces
inside tokens

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Subtokenizer CT1

(Py)

CT1

(Ja)

CT2

(Py)

CT2

(Ja)

CS

(Py)

CS

(Ja)

CG

(Ja)

CD

(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Various levels of including spaces and punctuation in tokens:

Subtokenization granularity

allow new
lines and ;

inside tokens

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Subtokenizer CT1

(Py)

CT1

(Ja)

CT2

(Py)

CT2

(Ja)

CS

(Py)

CS

(Ja)

CG

(Ja)

CD

(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Various levels of including spaces and punctuation in tokens:

Subtokenization granularity
Various levels of including spaces and punctuation in tokens:

Main conclusion: Level 1 compresses lengths by 17% without performance drop, comp. to Level 0

Level Example

0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’, ‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’,
‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’,
‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’,
‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’, ‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’, ‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens
which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be
obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Figure 2: Results on various subtokenization granularity, averaged over 4 finetuning runs (mean ± standard
deviation). Level 0 – baseline subtokenization. Numerical data for all plots is given in Appendix.

This reduces the average length by 23% compared270

to Level 0. The motivation for Level 2 is that a271

lot of API name tokens almost always go with the272

dot, e. g. .join or .split in Python. Figure 2273

shows that Level 1 model performs similar or bet-274

ter than Level 0 model in all tasks, and Level 2275

performs similar or better than Level 0 in six tasks,276

marginally worse – in Python code summarization277

and significantly worse – in Java code generation.278

Level 3 makes a step back from Level 4 and re-279

stricts the complexity of composite tokens such that280

each composed token may represent either a simple281

one-line code pattern or a punctuation combination,282

but could not combine them. Quantitatively, Level283

3 performs generally better than the next Level 4,284

but (marginally of significantly) worse than the pre-285

vious Level 2 in six tasks and similar – in two tasks286

(generation and clone detection).287

To sum up, punctuation combinations (Level 1)288

results in sequence lengths reduction by 17% with-289

out performance drop in all tasks. Length reduc-290

tion could be increased up to 24% in most tasks291

by allowing dots attaching to tokens (Level 2) and292

up to 40% in most code understanding tasks – by293

allowing arbitrary subtoken combinations (Level294

4). However, one should note that some subtoken295

combinations are programming language-specific,296

we investigate the transferability of subtokenizers297

between programming languages in Section 6. 298

One of the potential issues with using composite 299

tokens in code-generative tasks is that an inaccurate 300

generation of a “long” token may change all the 301

following generated code. For example, in Java– 302

Python code translation, a cycle which traverses all 303

unique element pairs in an array, converts to 304

for l in range (0 , arr_size - 1) : 305
for r in range (l + 1 , arr_size) : 306

While Level 0 model generates exactly the specified 307

cycle and Level 1 model only modifies the first 308

cycle: range (arr_size - 1), making it 309

even more concise, Level 3 model generates 310

for l in range (0 , arr_size) : 311
for r in range (0 , arr_size) : 312

which results in traversing some elements 313

twice. Here the first cycle was begun with tokens 314

‘for l in’ and ‘range (0 ,’ and the sec- 315

ond cycle was begun with tokens ‘for r in’ 316

and ‘range (0 ,’ where the latter one re- 317

peats the previously used token and starts an in- 318

correct line. However, according to our manual 319

prediction analyses, such an inaccurate genera- 320

tion, if it happens, rarely results in the wrong 321

code and often does not affect code seman- 322

tics. For example, Level 3 model may gener- 323

ate [‘range (0 ,’, ‘n)’] instead of equiv- 324

alent range(n). Or this model may gener- 325

4

Py: Python
Ja: Java

Subtokenization algorithm: BPE vs UnigramLM

Main conclusion: UnigramLM slightly outperforms or performs on par with BPE in 7 tasks

Subtokenization algorithm: BPE vs UnigramLM
UnigramLM is better aligned with splitting identifiers by CamelCase and snake_case:

Level Example
0 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’,

‘print’, ‘(’, ‘i’, ‘)’, ‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’, ‘)’]

1 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’,

‘print’, ‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘])’]

2 [‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’,

‘(’, ‘i’, ‘) NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘])’]

3 [‘for i in range’, ‘(df’, ‘. shape [1’, ‘]) :’, ‘NEW_LINE INDENT’, ‘print’, ‘(i’, ‘) NEW_LINE’,

‘print’, ‘(df’, ‘. column’, ‘s [i’, ‘])’]

4 [‘for i in range’, ‘(df’, ‘. shape’, ‘[1]’, ‘)’, ‘: NEW_LINE’, ‘INDENT print’, ‘(i)’,

‘NEW_LINE print’, ‘(df’, ‘. columns’, ‘[i])’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green emphasizes tokens

which could not be obtained in the previous level, and gray emphasises the remaining tokens that could not be

obtained in Level 0. Levels list allowed merges, but what particular merges to perform is chosen by the tokenizer.

Original token UnigramLM subtok-

enization

BPE subtokenization Native subtokenization

(Camel- or snake_case)

fromDottedString [’from’, ’Dotted’, ’String’] [’from’, ’Dot’, ’ted’, ’String’] [’from’, ’Dotted’, ’String’]

isInstantiated [’is’, ’Instantiate’, ’d’] [’isIn’, ’stanti’, ’ated’] [’is’, ’Instantiated’]

GridBagConverter [’Grid’, ’Bag’, ’Converter’] [’GridBag’, ’Converter’] [’Grid’, ’Bag’, ’Converter’]

isSameSize

Horizontally

[’isSame’, ’Size’,

’Horizontally’]

[’isSame’, ’Size’, ’H’,

’orizontally’]

[’is’, ’Same’, ’Size’,

’Horizontally’]

PA_Hierarchy_ID [‘PA’, ‘_’, ‘Hierarchy’, ‘_ID’] [‘PA’, ‘_H’, ‘ierarchy’, ‘_ID’] [‘PA’, ‘_’, ‘Hierarchy’, ‘_’, ‘ID’]

Subtokenizer CT1
(Py)

CT1
(Ja)

CT2
(Py)

CT2
(Ja)

CS
(Py)

CS
(Ja)

CG
(Ja)

CD
(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8

UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3

UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2

UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5

UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3

BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0

UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7

UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5

UnigramLM 50k Level 0

(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +

BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 2: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2: Code Translation

2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Generation (CodeBLEU), CD: Clone

Detection (F1). Py – Python, Ja – Java.

2

Vocabulary size
Unigram LM: 50k, 10k, 2k

Main conclusion: 10k > 50k in 4 tasks, in other tasks similar performance

Main conclusion: 10k > 50k in 4 tasks, in other tasks similar performance

Vocabulary size
Unigram LM: 50k, 10k, 2k

Subtokenization algorithm + vocabulary size

UnigramLM 10k > commonly used BPE 50k in 3 tasks substantially and 2 tasks by one std

Subtokenization algorithm + vocabulary size

UnigramLM 10k > commonly used BPE 50k in 3 tasks significantly and 2 tasks by one std

Summary

BPE-50k

UnigramLM-10k (3-19% length increase)

Grouping punctuation without quality drop

F req Lists = [[0 , 0] for i in range (voc Sz)]

F req Lists = [[0 , 0] for i in range (10)]

+0.5-2% quality

 →

17% length reduction

Freq List s = [[0 , 0] for i in range (vo c S z)]

Freq Lists =[[0 , 0] for i in range (voc S z)]

Commonly used

Grouping frequent combinations 40% length reduction
(sometimes quality drop)

Freq List s=[[0,0] for_i_in_range (vo c S z)]

BPE-50k

UnigramLM-10k (3-19% length increase)

Grouping punctuation without quality drop

F req Lists = [[0 , 0] for i in range (voc Sz)]

F req Lists = [[0 , 0] for i in range (10)]

+0.5-2% quality

 →

17% length reduction

Freq List s = [[0 , 0] for i in range (vo c S z)]

Freq Lists =[[0 , 0] for i in range (voc S z)]

Commonly used

Grouping frequent combinations 40% length reduction
(sometimes quality drop)

Freq List s=[[0,0] for_i_in_range (vo c S z)]

BPE-50k

UnigramLM-10k (3-19% length increase)

Grouping punctuation without quality drop

F req Lists = [[0 , 0] for i in range (voc Sz)]

F req Lists = [[0 , 0] for i in range (10)]

+0.5-2% quality

 →

17% length reduction

Freq List s = [[0 , 0] for i in range (vo c S z)]

Freq Lists =[[0 , 0] for i in range (voc S z)]

Commonly used

Grouping frequent combinations 40% length reduction
(sometimes quality drop)

Freq List s=[[0,0] for_i_in_range (vo c S z)]

CodeBPE /
CodeUnigramLM

