

FairGBM

Gradient Boosting with

Fairness Constraints

International Conference on Learning Representations ICLR 2023

André Cruz

Catarina Belém

João Bravo

Pedro Saleiro

Pedro Bizarro

Motivation

- ML has become ubiquitous in a multitude of high-stakes applications.
- At the same time, numerous reports have warned of AI bias in production systems.

Algorithms should have made courts more fair. What went wrong?

Biased Lending Evolves, and Blacks Face Trouble Getting Mortgages

The New York Times

Amazon scraps secret AI recruiting tool that showed bias against women

Motivation

- ML has become ubiquitous in a multitude of high-stakes applications.
- At the same time, numerous reports have warned of AI bias in production systems.

• GBMs are still the state-of-the-art on tabular data, often outperforming Deep Learning approaches.

Motivation

- ML has become ubiquitous in a multitude of high-stakes applications.
- At the same time, numerous reports have warned of AI bias in production systems.

- GBMs are still the state-of-the-art on tabular data, often outperforming Deep Learning approaches.
- There are no (fairness-)constrained optimization methods tailored for GBM.

feedzai

Goal: Training GBM to minimize loss under fairness constraints.

Goal: Training GBM to minimize loss under fairness constraints.

feedzai

feedzai

Goal: Training GBM to minimize loss under fairness constraints.

Approach

• The *standard* approach for constrained optimization is to use the method of Lagrange multipliers.

feedzai

Goal: Training GBM to minimize loss under fairness constraints.

Approach

• The *standard* approach for constrained optimization is to use the method of Lagrange multipliers.

• Solution lies on saddle point of the Lagrangian function, $\mathcal{L}(\theta, \lambda)$.

• Finding the saddle-point of $\mathcal{L}(\theta, \lambda) = l(\theta) + \sum_{i=1}^{m} \lambda_i c_i(\theta)$, at $\nabla \mathcal{L}(\theta, \lambda) = \vec{0}$.

• Finding the saddle-point of $\mathcal{L}(\theta, \lambda) = l(\theta) + \sum_{i=1}^{m} \lambda_i c_i(\theta)$, at $\nabla \mathcal{L}(\theta, \lambda) = \vec{0}$.

θ-plaver

• In practice, this is done via iterative gradient descent and ascent steps.

feedzai

 λ -player

• Finding the saddle-point of $\mathcal{L}(\theta, \lambda) = l(\theta) + \sum_{i=1}^{m} \lambda_i c_i(\theta)$, at $\nabla \mathcal{L}(\theta, \lambda) = \vec{0}$.

θ-plaver

• In practice, this is done via iterative gradient descent and ascent steps.

• Gradient descent over
$$\theta$$
: $\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial l}{\partial \theta} + \sum_{i=1}^{m} \lambda_i \frac{\partial c_i}{\partial \theta}$

• Gradient ascent over λ :

$$\frac{\partial \mathcal{L}}{\partial \lambda_i} = c_i(\theta)$$

teedzai

λ-plaver

- Finding the saddle-point of $\mathcal{L}(\theta, \lambda) = l(\theta) + \sum_{i=1}^{m} \lambda_i c_i(\theta)$, at $\nabla \mathcal{L}(\theta, \lambda) = \vec{0}$.
- In practice, this is done via iterative gradient descent and ascent steps.

• Gradient descent over
$$\theta$$
: $\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial l}{\partial \theta} + \sum_{i=1}^{m} \lambda_i \frac{\partial c_i}{\partial \theta}$ we require differentiable constraints
• Gradient ascent over λ : $\frac{\partial \mathcal{L}}{\partial \lambda_i} = c_i(\theta)$ but only for the descent step!

feedzai

- Finding the saddle-point of $\mathcal{L}(\theta, \lambda) = l(\theta) + \sum_{i=1}^{m} \lambda_i c_i(\theta)$, at $\nabla \mathcal{L}(\theta, \lambda) = \vec{0}$.
- In practice, this is done via iterative gradient descent and ascent steps.

• Gradient descent over
$$\theta$$
: $\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial l}{\partial \theta} + \sum_{i=1}^{m} \lambda_i \frac{\partial c_i}{\partial \theta}$ we require differentiable constraints
• Gradient ascent over λ : $\frac{\partial \mathcal{L}}{\partial \lambda_i} = c_i(\theta)$ but only for the descent step!

However, fairness metrics are **non-differentiable** (and also non-convex)

feedzai

Differentiable Proxy Metrics

Issue:

Fairness metrics are non-differentiable (and non-convex).

Issue:

Fairness metrics are non-differentiable (and non-convex).

Solution

- Use a differentiable upper-bound proxy: $c_i(\theta) \leq \tilde{c}_i(\theta) \leq 0$.
 - Gradient descent on the proxy-Lagrangian:

$$\frac{\partial \tilde{\mathcal{L}}}{\partial \theta} = \frac{\partial l}{\partial \theta} + \sum_{i=1}^{m} \lambda_i \frac{\partial \tilde{c}_i}{\partial \theta}$$

Differentiable Proxy Metrics

Issue:

Fairness metrics are non-differentiable (and non-convex).

Solution

- Use a differentiable upper-bound proxy: $c_i(\theta) \leq \tilde{c}_i(\theta) \leq 0$.
 - Gradient descent on the proxy-Lagrangian:

$$\frac{\partial \tilde{\mathcal{L}}}{\partial \theta} = \frac{\partial l}{\partial \theta} + \sum_{i=1}^{m} \lambda_i \frac{\partial \tilde{c}_i}{\partial \theta}$$

• However, we'll be doing gradient descent and ascent on different functions: $\tilde{\mathcal{L}}, \mathcal{L}$.

Issue

- We're doing gradient descent over $\tilde{\mathcal{L}}$, and ascent over \mathcal{L} .
 - It's no longer a zero-sum game.
- Our proxy constraints are still non-convex (although differentiable).

feedzai

Issue

- We're doing gradient descent over $\tilde{\mathcal{L}}$, and ascent over \mathcal{L} .
 - It's no longer a zero-sum game.
- Our proxy constraints are still non-convex (although differentiable).

Solution

- Instead of finding a pure Nash equilibrium: a single (θ , λ) pair (a single classifier).
- The solution lies on a distribution over (θ , λ) pairs (a distribution of classifiers) [Cotter et al., 2019]
 - A randomized classifier.

teedzai

Randomized Classifiers

Related Work

- [Agarwal et al., 2018]: an *ensemble* of standard strong learners.
 - General method that is also compatible with GBM.
 - Increases training time dramatically (default: 50x increase).

feedzai

Randomized Classifiers

Related Work

- [Agarwal et al., 2018]: an *ensemble* of standard strong learners.
 - General method that is also compatible with GBM.
 - Increases training time dramatically (default: 50x increase).

FairGBM

• Boosting fits an additive model: $f(x) = \sum_{i=1} \beta_i \underline{b(x, \gamma_i)}$.

• Model iterate at iteration *k* : simply add the first *k* trees!

Randomized Classifiers

Related Work

- [Agarwal et al., 2018]: an *ensemble* of standard strong learners.
 - General method that is also compatible with GBM.
 - Increases training time dramatically (default: 50x increase).

FairGBM

• Boosting fits an additive model: $f(x) = \sum \beta_i \underline{b(x, \gamma_i)}$.

- Model iterate at iteration *k* : simply add the first *k* trees!
- FairGBM randomized classifier carries virtually no CPU or memory overhead.

FairGBM Training Algorithm

Algorithm 1 FairGBM training pseudocode

Input: $T \in \mathbb{N}$, number of boosting rounds $\mathcal{L}, \tilde{\mathcal{L}}: \mathcal{F} \times \mathbb{R}^m_+ \to \mathbb{R}$, Lagrangian and proxy-Lagrangian $\eta_f, \eta_\lambda \in \mathbb{R}_+$, learning rates 1: Let $h_0 = \arg \min_{\gamma \in \mathbb{R}} \tilde{\mathcal{L}}(\gamma, 0)$ ▷ Initial constant "guess" 2: Initialize $f \leftarrow h_0$ 3: Initialize $\lambda \leftarrow 0$ 4: for $t \in \{1, ..., T\}$ do Let $g_i = \frac{\partial \tilde{\mathcal{L}}(f(x_i), \lambda)}{\partial f(x_i)}$ 5: ▷ Gradient of proxy-Lagrangian w.r.t. model Let $\Delta = \frac{\partial \mathcal{L}(f(x_i),\lambda)}{\partial \lambda}$ 6. ▷ Gradient of Lagrangian w.r.t. multipliers Let $h_t = \operatorname{arg\,min}_{h_t \in \mathcal{H}} \sum_{i=1}^N \left(-g_i - h_t(x_i)\right)^2$ 7: ⊳ Fit base learner Update $f \leftarrow f + \eta_f h_t$ ▷ Gradient descent 8: Update $\lambda \leftarrow (\lambda + \eta_{\lambda} \Delta)_{\perp}$ ▷ Projected gradient ascent 9: 10: return $h_0, ..., h_T$

Experimental Setup

• Datasets

- ACS folktables datasets [Ding et al., 2021]
 - Five public datasets based on US census data;
 - Includes modern-day version of UCI Adult dataset;
 - 1M to 3M rows;
- Account Opening Fraud dataset
 - In-house real-world data stream of account opening fraud on a major European bank;
 - 500K rows;
- Literature baselines:
 - Fairlearn Exponentiated Gradient Reduction [Agarwal et al., 2018]
 - Fairlearn Grid Search [Agarwal et al., 2018]
 - Fairlearn Random Search
 - Unconstrained LightGBM [Ke et al., 2017]

feedzai

Results on ACSIncome dataset

Results on ACSIncome dataset

0.0

0.2

0.6

0.8

0.4

1.0

feedzai

Results on AOF dataset

Other Datasets

feedzai

feedzai

Results on ACS datasets

feedzai

Results on ACS datasets

Open-Source Repository

feedzai

• Open-source package available at

https://github.com/feedzai/fairgbm/

📮 feedzai / fairgbm				☆	Star 56	*
<> Code	O Issues	រៀ Pull	requests			
rain Gradi	ent Boostin	g models	that are bo	th high-perform	ance *and	* Fair!
tabular-dat	a gbm	lightgbm	fairness	gradient-boostin	ig fairne	ss-ml

• Try it out for yourself (on linux)

```
from fairgbm import FairGBMClassifier
# Instantiate
fairgbm_clf = FairGBMClassifier(
    constraint_type="FNR",
                              # constraint on equal group-wise TPR (equal opportunity)
    n_estimators=200,
                              # core parameters from vanilla LightGBM
    random state=42,
                              # ...
# Train using features (X), labels (Y), and sensitive attributes (S)
fairgbm_clf.fit(X, Y, constraint_group=S)
# NOTE: labels (Y) and sensitive attributes (S) must be in numeric format
# Predict
Y_test_pred = fairgbm_clf.predict_proba(X_test)[:, -1] # Compute continuous class probabilities (re
# Y_test_pred = fairgbm_clf.predict(X_test)
                                                       # Or compute discrete class predictions
```

Thank You

Check out the paper at https://arxiv.org/pdf/2209.07850

Check out the code at https://github.com/feedzai/fairgbm

