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Out-of-Distribution generalization

Models trained with Empirical Risk Minimization (ERM) are often:


- prone to spurious correlations 


- can hardly generalize to OOD data  


( Beery et al., 2018; Arjovsky et al., 2019; DeGrave et al. 2021; Ahuja et al., 2021; Zhang et al., 2022)
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Previous works focus on OOD objectives

Previous works mostly focus on developing better optimization objectives:

Regularization via some OOD objective

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD
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Previous works mostly focus on developing better optimization objectives:

Regularization via some relaxed OOD objective

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Kamath et al., 2021)

min
f

LERM + λ ⋅ ̂LOOD
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Previous works mostly focus on developing better optimization objectives:

Regularization via some relaxed OOD objective

The Optimization Dilemma in OOD Generalization

         min
f=w∘φ ∑

e∈ℰtr

ℒe(w ∘ φ),

s.t. w ∈ arg min
w̄

ℒe(w̄ ∘ φ), ∀e ∈ ℰtr

IRM

         
min

φ ∑
e∈ℰtr

ℒe(φ) + λ∥∇w|w=1ℒe(w ⋅ φ)∥2

IRMv1

         min
φ ∑

e∈ℰtr

ℒe(φ),

s.t. ∇w|w=1ℒe(w ⋅ φ) = 0, ∀e ∈ ℰtr

IRM𝒮

w ∈ ℝdLinearized IRM with Soften the constraints

(Arjovsky et al., 2019; Kamath et al., 2021)

min
f

LERM + λ ⋅ ̂LOOD

😋 🥲 🥲 🥲 



The practical variants of IRM can have very different behaviors from the original IRM.

The ellipsoids are the solutions satisfying 

the invariant constraints in  IRM𝒮

∇w|w=1ℒe(w ⋅ φ) = 0, ∀e ∈ ℰtr

🥲 

The Optimization Dilemma in OOD Generalization

6 (Arjovsky et al., 2019; Kamath et al., 2021)

Illustration of IRMv1 failures



The practical variants of IRM can have very different behaviors from the original IRM.

 is yet preferred than f1 fIRM

🥲 

The ellipsoids are the solutions satisfying 

the invariant constraints in  IRM𝒮

∇w|w=1ℒe(w ⋅ φ) = 0, ∀e ∈ ℰtr

Illustration of IRMv1 failures

(Arjovsky et al., 2019; Kamath et al., 2021)7

The Optimization Dilemma in OOD Generalization
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Previous works mostly focus on developing better optimization objectives:

 is hard to tuneλ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD
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Previous works mostly focus on developing better optimization objectives:

 is hard to tuneλ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD

Gradient Conflicts generically exist between 

ERM and OOD objectives:

gERM gOOD
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The linear weight scheme

The Optimization Dilemma in OOD Generalization

(Boyd & Vandenberghe, 2014)

min
f

LERM + λ ⋅ ̂LOOD

The typically used linear weighting scheme cannot reach non-convex part of pareto front solutions



11

 is too strong to learn the correlation;λ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

min
f

LERM + λ ⋅ ̂LOOD

Even the desired solution is reachable, the scheme requires exhaustive hyperparemter tuning: 

 is too weak to keep the invarianceλ
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 is hard to tuneλ

The Optimization Dilemma in OOD Generalization

(Arjovsky et al., 2019; Krueger et al., 2021; Rame et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Zhang et al., 2022)

Regularization via some relaxed OOD objective

min
f

LERM + λ ⋅ ̂LOOD

The usual optimization formula of OOD objectives in practice:


•  usually has a large gap from the original one;

•  is hard to tune, i.e., 





̂LOOD
λ
Not all potentially optimal solutions are reachable;
Even reachable, it still requires exhaustive tuning efforts to find a proper λ;



How to obtain a desired OOD solution
under the ERM and OOD conflicts?

As the traditional optimization scheme fails 
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From a Multi-Objective Optimization perspective…

min
f

LERM + λ ⋅ ̂LOOD

The optimization of IRM essentially handles the trade-off between

Capturing the statistical correlations Enforcing the invariance of learned correlations
Oh, it’s a Multi-Objective Optimization (MOO)!

min
f

{LERM, ̂LOOD}T

14



From a Multi-Objective Optimization perspective…

min
f=w⋅φ

{L1, L2}T

Assume we have the Multi-Objective Optimization (MOO) problem with 2 objectives:

Simulated Pareto front

• A solution   (with ) dominates    
(with ) if both  and ;


• Pareto optimal solutions are the set of 
solutions dominated by none;


• Their images form the Pareto front;

f {L1, L2}T f̄
{L̄1, L̄2}T L1 ≤ L̄1 L2 ≤ L̄2

(Kaisa, 1999)15



From a Multi-Objective Optimization perspective…

min
f=w⋅φ

{L1, L2, LIRM}T

Assume we have 2 training environments, a natural MOO formulation of IRMv1 is:

Simulated Pareto front Illustration of IRMv1 failures
16



From a Multi-Objective Optimization perspective…

min
f=w⋅φ

{L1, L2, LIRM}T

The failures of practical IRM variants is because of using bad objectives!

Simulated Pareto front Illustration of IRMv1 failures
17



Robustify MOO objectives

IRM can extrapolate stationary points of negative combinations of training environments:


{ ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1,λe ≥ 0,∀e} { ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1, λe ≤ 0, ∀e}

(Arjovsky et al., 2019; Bottou et al., 2019; Krueger et al., 2021)18



(Arjovsky et al., 2019; Bottou et al., 2019; Krueger et al., 2021)

We can introduce additional guidance that directly enforces extrapolation at certain region.


{ ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1,λe ≥ 0,∀e} { ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1, λe ≤ 0, ∀e} { ∑
e∈ℰtr

λe𝒟e | ∑
e∈ℰtr

λe = 1,λe ≤ − β, ∀e}

👉 This brings us a new MOO objectives, IRMX:    min
f=w⋅φ

{L1, L2, LIRM, LREx}T

Robustify MOO objectives

19



PAIR: PAreto Invariant Risk minimization

😋

Theoretical results (Informal):
IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021). 

A PAIRed journey into the adventure of extrapolation:    min
f=w⋅φ

{LERM, LIRM, LREx}T

20



PAIR: PAreto Invariant Risk minimization

A PAIRed journey into the adventure of extrapolation:    min
f=w⋅φ

{LERM, LIRM, LREx}T
😋

Theoretical results (Informal):
IRMX solves the IRMv1 failures under any environment settings in (Kamath et al., 2021). 

IRMX raises more challenges in hp. tuning!
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PAIR: PAreto Invariant Risk minimization

IRMX raises more challenges in the optimization:


• The Pareto front becomes more complicated: 


min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

IRMX raises more challenges in the optimization:


• The Pareto front becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


e.g., MGDA algorithms (Désidéri, 2012)

min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

IRMX raises more challenges in the optimization:


• The Pareto front becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 


min
f=w⋅φ

{LERM, LIRM, LREx}T
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PAIR: PAreto Invariant Risk minimization

min
f=w⋅φ

{LERM, LIRM, LREx}T

IRMX raises more challenges in the optimization:


• The Pareto front becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 

✓ A preference of each objective is required! 


Exact Pareto Optimality:
Given a preference  for each objective, a solution  
satisfies Exact Pareto Optimality iff. .

p = {pERM, pIRM, pREx}T ̂L = { ̂LERM, ̂L IRM, ̂LREx}T

pERM ̂LERM = pIRM ̂L IRM = pREx ̂LREx
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PAIR: PAreto Invariant Risk minimization

min
f=w⋅φ

{LERM, LIRM, LREx}T

IRMX raises more challenges in the optimization:


• The Pareto front becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 

✓ A preference of each objective is required! PAIR-o as the OOD optimizer;


Exact Pareto optimal search

(Mahapatra & Rajan 2020)

Theoretical results (Informal):
Under mild assumptions, let   be the desired OOD solution w.r.t. an underlying preference , PAIR-o 
converges and approximates to  for any approximated . 

fOOD pOOD
fOOD ̂pOOD
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PAIR: PAreto Invariant Risk minimization

min
f=w⋅φ

{LERM, LIRM, LREx}T

IRMX raises more challenges in the optimization:


• The Pareto front becomes more complicated: 

✓ The optimizer needs to be able to reach any Pareto optimal solutions!


• There can be multiple Pareto optimal solutions: 

✓ A preference of each objective is required! PAIR-o as the OOD optimizer;

✓ It also motivates a new model selection criteria, by selecting models that 

maximally satisfy the Exact Pareto Optimality! PAIR-s as the OOD model selector;

Exact Pareto optimal search

(Gulrajani & Lopez-Paz, 2021)27
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Causal Invariance Recovery Tests

Ground Truth ERM IRMv1

VREx IRMX PAIR

Regression target:

, only 

depends on the x-axis;


Training envs:

Two elliptical regions 
(Gaussian distributions) 
marked in red; 


Invariance:

The overlapped x-axis 

region, i.e., .

Y = sin(X1) + 1

[−2,2]
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PAIR as the optimizer

PAIR re-empowers IRMv1 and achieves new state-of-the-arts across 6 challenging realistic datasets.
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PAIR as the model selector

PAIR-s substantially improves the worst environment performance of all representative OOD methods up to 10%.



Summary

We provided a new understanding of the optimization dilemma in OOD generalization 
from the Multi-Objective Optimization perspective.

We attributed the failures of OOD optimization to the compromised robustness of 
relaxed OOD objectives and the unreliable optimization scheme.

We highlighted the importance of trading-off the ERM and OOD objectives and 
proposed a new optimization scheme PAIR to mitigate the dilemma.

Contact: yqchen@cse.cuhk.edu.hk 

Thank you!
Paper Code 
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