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Challenge: explicit user feedback is rare in recommender systems
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Using fixed weighting of implicit feedback is not ideal...
e exhaustive counterfactual search scales poorly
e ever-changing Ul and non-stationary users
e unfairness due to one-size-fits-all rewards
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IGL-P only requires two simple conditions to succeed:
(1) rewards are rare and (2) users communicate consistently

IGL-P
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Exp 1: Image recommendation for
Windows users

Friday, June 2

Compared to production policy,
IGL-P received similar positive
feedback and improved negative
feedback, despite training on
significantly less data.

Exp 2: News recommendation for
Facebook users

Policies trained with rewards used
by Facebook circa 2017 had un-
fair performance. IGL-P performed
consistently well across different
user types.
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IGL-P can match IGL-P can easily IGL-P uses
state-of-the-art adapt and evolve personalized
performance with changing rewards to
at a fraction systems improve fairness
of the cost and users for diverse users

Although we introduced personalized reward learning for
recommender systems, IGL-P can benefit any application that
suffers from a one-size-fits-all approach!



