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Motivation

= The recent success of dexterous manipulation has been

DexDeform provides a simulation platform

Qualitative Evaluation
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teleoperation, supporting easy collection of demonstrations. dexterous manipulation of deformable object.

= We build a platform that integrates low-cost teleoperation
with a soft-body simulation that is differentiable.

= A skill-learning framework that plans actions based on
abstractions, and bootstrap skills with differentiable physics.

= We propose a skill learning framework that learns from
demonstrations and bootstrap skills with differentiable
physics trajectory optimization.

= Qur approach outperforms the baselines and successfully
accomplishes six challenging tasks.




