
Understanding Train-Validation Split in Meta-Learning
with Neural Networks

Xinzhe Zuo1 Zixiang Chen2 Huaxiu Yao3 Yuan Cao4,5

Quanquan Gu2

1Department of Mathematics, UCLA

2Department of Computer Science, UCLA

3Department of Computer Science, Stanford

4Department of Statistics and Actuarial Science, University of Hong Kong

5Department of Mathematics, University of Hong Kong

April 28, 2023

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 1 / 17

Model Agnostic Meta-Learning[1]

Figure: MAML Algorithm by Finn et al. [1]. Usually, the samples used for the
inner optimization steps (line 6) are different from samples used for the outer
optimization steps (line 8). This is known as the train-validation split.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 2 / 17

Motivation

Why study train-validation split?

There exist algorithms (Reptile [2] and Meta-MinibatchProx [3]) that
use all per task data for training and perform well on benchmark
tasks.

Since each task does not contain many samples, splitting each task
into training set and validation set might hurt data efficiency.

Bai et al. [4] showed that in the linearly realizable case, train-train
method can aymptotically achieve better MSE than the
train-validation method in a linear model.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 3 / 17

Data model

We need to establish

1 the relation among different tasks

2 the data distribution for each specific task

To achieve this, we suppose that the data distribution Dk for the k-th task
is defined based on a vector νk , i.e., Dk = D(νk), and that the vectors
ν1, . . . ,νK are independently drawn from a distribution Π.

Definition 1 (Distribution of tasks)

Let ν, z1, . . . , zM ∈ Rd be fixed vectors, where z1, . . . , zM are orthogonal
to ν. A vector ν̃ is generated from Π by (i) randomly pick a vector z from
{z1, . . . , zM}, and (ii) let ν̃ = ν + z.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 4 / 17

Data model

Definition 2 (Distribution of data)

Given a vector νk ∈ Rd , each data point (x, y) with
x = [x(1)⊤, x(2)⊤]⊤ ∈ R2d and y ∈ {−1, 1} is generated from D(ν̃) as
follows:

1 The label y is assigned as +1 or −1 with equal probability.

2 A noise vector ξ is generated from N (0, σ2
ξ · (I− P)), where

P ∈ Rd×d is the projection operator onto span({ν, z1, . . . , zM}).
3 One of x(1), x(2) is randomly selected and assigned as y · νk ; the other

is assigned as ξ.

For k ∈ [K], we denote by Sk = {(xk,i , yk,i)}ni=1 the set of independent
samples from the k-th observed task.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 5 / 17

Neural Network model

We study a two-layer CNN with m hidden layer neurons whose second
layer weights are frozen as ±1’s. Let W represent the collection of all
weights of our network. For a data input x = [x(1)⊤, x(2)⊤]⊤, we consider
the convolutional neural network f (W, x) = F+1(W+1, x)− F−1(W−1, x),
where

Fj(Wj , x) =
m∑
r=1

2∑
p=1

σ(⟨wj ,r , x
(p)⟩) , j ∈ {−1, 1}.

Here, for j ∈ {+1,−1} and r ∈ [m], we use wj ,r to denote the r -th
convolution filter with second layer weight j , and use Wj to denote the
collection of wj ,1, . . . ,wj ,m. The activation function σ(·) is the
Huberized-ReLU function.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 6 / 17

Neural Network model

We consider cross-entropy loss. The loss at a data point (x, y) is given as
L(W, x, y) = ℓ[y · f (W, x)], where ℓ(z) = log(1 + exp(−z)). For a set of
data points S, we also define

L(W,S) = 1

|S|
∑

(x,y)∈S

L(W, x, y). (0.1)

Following the data model given in Definitions 1 and 2, We define the test
loss achieved by a CNN with weights W as

Ltest(W) := Eν̃∼Π,(x,y)∼D(ν̃)ℓ(y · f (W, x)) . (0.2)

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 7 / 17

Train-train method

Train-train: for each task k , we use all of the samples for adapting the
parameter in the inner-loop updates. Specifically, the meta objective is to
minimize

L̂tr-tr(W, {Sk}Kk=1) =
1

K

K∑
k=1

L(W̃(W,Sk),Sk) , (0.3)

where W̃(W,Sk) represents the weights of the network after J gradient
descent steps (w.r.t. loss L(·,Sk)) starting from W with step size γ. The
FOMAML algorithm updates the CNN weights using the following update
rule:

W(t+1) = W(t) − η · 1

K

K∑
k=1

∇WL(W,Sk)|W=W̃(W(t),Sk)
. (0.4)

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 8 / 17

Train-validation method

Train-validation: for each task k , we split the data with index sets
Itr
k = {1, . . . , n1} and Ival

k = {n1 + 1, . . . , n}. We then use
Str
k = {(xk,i , yk,i)}i∈Itr

k
as the training data set, and

Sval
k = {(xk,i , yk,i)}i∈Ival

k
as the validation data set. The meta objective of

the train-validation method is to minimize

L̂tr-val(W, {Sk}Kk=1) =
1

K

K∑
k=1

L(W̃(W,Str
k),Sval

k) , (0.5)

where W̃(W,Str
k) represents the weights of the network after J gradient

descent steps (w.r.t. loss L(·,Str
k)) starting from W with step size γ. For

the train-validation method, the FOMAML algorithm implements the
following outer-loop update rule to train the network:

W(t+1) = W(t) − η · 1

K

K∑
k=1

∇WL(W,Sval
k)|W=W̃(W(t),Str

k)
. (0.6)

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 9 / 17

Additional Conditions

Condition 4.1

There exists σs > 0 such that (1/2) · σs
√
d ≤ ∥zi∥2 ≤ (3/2) · σs

√
d for

i ∈ [M], and ⟨zi , zj⟩ ≤ O(σ2
s ·

√
d log(d)) for all i ̸= j .

Condition 4.2

∥ν∥2 = 1, σξ = d−1/2 · polylog(d), σs = d−1/2/polylog(d), n = Θ(1),
K = polylog(d), m = polylog(d), Ω(d1/2) ≤ M ≤ d/2.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 10 / 17

Additional Conditions

Condition 4.3

We initialize the CNN weights W(0) by Gaussian random initialization with
standard deviation σ0 = d−1/2. We set the inner-loop step size
γ = polylog(d), and the outer-loop step size η = 1/polylog(d). We run
T = poly(d) outer-loop iterations, and within each outer-loop iteration,
we run J = 5 inner-loop gradient descent steps.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 11 / 17

Main results

Theorem 4.4

Under Conditions 4.1, 4.2 and 4.3, suppose that one uses the train-train
method to train the neural network. Then with probability at least
1− (Kn)−10,

1 the training loss is small:

min
t∈[T]

L̂tr-tr(W(t), {Sk}Kk=1) ≤ O
(

1

poly(d)

)
.

2 the test loss is large:

min
t∈[T]

Ltest(W
(t)) = Ω(1) .

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 12 / 17

Main results

Theorem 4.5

Under Conditions 4.1, 4.2 and 4.3, suppose that one uses the
train-validation method to train the neural network. Then with probability
at least 1− (Kn)−10,

1 the training loss is small:

min
t∈[T]

L̂tr-val(W(t), {Sk}Kk=1) ≤ O
(

1

poly(d)

)
.

2 the test loss is also small: there exists a constant c > 0 such that

Ltest(W
(T)) = O(exp(−K c)) .

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 13 / 17

Proof intuitions

Lemma 6.1 (informal)

Under the train-train method, the inner loop amplifies the noise inner
products more than it does to the feature inner products.

Lemma 6.2 (informal)

Under the train-validation method, the inner loop will have an amplifying
effect on the feature inner products. On the other hand, the inner loop
does not change the noise inner products by a lot.

The main reason the above lemma holds is because we assumed the noise
vector has a larger norm than the feature (recall that
∥ξ∥2 = Θ(polylog(d)), whereas ∥ν∥2 = 1).

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 14 / 17

Experiments

Table: Performance comparison of the number of optimization steps in the
inner-loop.

of Inner Steps Setting
RainbowMNIST miniImagenet

Acc ↑ Acc ↑

1 step
Train-Train 79.76 ± 0.41% 25.09 ± 1.11%
Train-Validation 85.83 ± 0.25% 25.17 ± 1.04%

5 steps
Train-Train 65.32 ± 0.54% 25.93 ± 1.10%
Train-Validation 87.52 ± 0.20% 46.15 ± 1.36%

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 15 / 17

Experiments

Table: Performance w.r.t. the inner-loop learning rate and the outer-loop learning
rate.

Setting Learning Rate
RainbowMNIST miniImagenet

Acc ↑ Acc ↑

outer-lr > inner-lr
Train-Train 64.82 ± 0.48% 20.00 ± 0.00%
Train-Validation 66.13 ± 0.31% 20.00 ± 0.00%

outer-lr < inner-lr
Train-Train 65.32 ± 0.54% 20.00 ± 0.10%
Train-Validation 87.52 ± 0.20% 46.15 ± 1.36%

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 16 / 17

Reference - thank you!

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in International Conference on
Machine Learning, pp. 1126–1135, PMLR, 2017.

A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

P. Zhou, X. Yuan, H. Xu, S. Yan, and J. Feng, “Efficient meta
learning via minibatch proximal update,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

Y. Bai, M. Chen, P. Zhou, T. Zhao, J. Lee, S. Kakade, H. Wang, and
C. Xiong, “How important is the train-validation split in
meta-learning?,” in International Conference on Machine Learning,
pp. 543–553, PMLR, 2021.

X.Zuo, Z.Chen, H.Yao, Y.Cao, Q.Gu Train-Validation Split in Meta-Learning April 28, 2023 17 / 17

