Understanding Train-Validation Split in Meta-Learning with Neural Networks

Xinzhe Zuo¹ Zixiang Chen² Huaxiu Yao³ Yuan Cao^{4,5} Quanquan Gu^2

¹Department of Mathematics, UCLA

²Department of Computer Science, UCLA

³Department of Computer Science, Stanford

⁴Department of Statistics and Actuarial Science, University of Hong Kong

⁵Department of Mathematics, University of Hong Kong

April 28, 2023

Model Agnostic Meta-Learning[1]

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α, β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for

8: Update
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

9: end while

Figure: MAML Algorithm by Finn et al. [1]. Usually, the samples used for the inner optimization steps (line 6) are different from samples used for the outer optimization steps (line 8). This is known as the **train-validation split**.

Why study train-validation split?

- There exist algorithms (Reptile [2] and Meta-MinibatchProx [3]) that use all per task data for training and perform well on benchmark tasks.
- Since each task does not contain many samples, splitting each task into training set and validation set might hurt data efficiency.
- Bai et al. [4] showed that in the linearly realizable case, train-train method can aymptotically achieve better MSE than the train-validation method in a linear model.

We need to establish

- the relation among different tasks
- the data distribution for each specific task

To achieve this, we suppose that the data distribution \mathcal{D}_k for the *k*-th task is defined based on a vector $\boldsymbol{\nu}_k$, i.e., $\mathcal{D}_k = \mathcal{D}(\boldsymbol{\nu}_k)$, and that the vectors $\boldsymbol{\nu}_1, \ldots, \boldsymbol{\nu}_K$ are independently drawn from a distribution Π .

Definition 1 (Distribution of tasks)

Let $\nu, z_1, \ldots, z_M \in \mathbb{R}^d$ be fixed vectors, where z_1, \ldots, z_M are orthogonal to ν . A vector $\tilde{\nu}$ is generated from Π by (i) randomly pick a vector z from $\{z_1, \ldots, z_M\}$, and (ii) let $\tilde{\nu} = \nu + z$.

Definition 2 (Distribution of data)

Given a vector $\boldsymbol{\nu}_k \in \mathbb{R}^d$, each data point (\mathbf{x}, y) with $\mathbf{x} = [\mathbf{x}^{(1)\top}, \mathbf{x}^{(2)\top}]^\top \in \mathbb{R}^{2d}$ and $y \in \{-1, 1\}$ is generated from $\mathcal{D}(\tilde{\boldsymbol{\nu}})$ as follows:

- **(**) The label y is assigned as +1 or -1 with equal probability.
- **②** A noise vector $\boldsymbol{\xi}$ is generated from $\mathcal{N}(\mathbf{0}, \sigma_{\boldsymbol{\xi}}^2 \cdot (\mathbf{I} \mathbf{P}))$, where **P** ∈ $\mathbb{R}^{d \times d}$ is the projection operator onto span({ $\nu, \mathbf{z}_1, \dots, \mathbf{z}_M$ }).
- One of x⁽¹⁾, x⁽²⁾ is randomly selected and assigned as y · ν_k; the other is assigned as ξ.

For $k \in [K]$, we denote by $S_k = \{(\mathbf{x}_{k,i}, y_{k,i})\}_{i=1}^n$ the set of independent samples from the *k*-th observed task.

We study a two-layer CNN with *m* hidden layer neurons whose second layer weights are frozen as ± 1 's. Let **W** represent the collection of all weights of our network. For a data input $\mathbf{x} = [\mathbf{x}^{(1)\top}, \mathbf{x}^{(2)\top}]^{\top}$, we consider the convolutional neural network $f(\mathbf{W}, \mathbf{x}) = F_{+1}(\mathbf{W}_{+1}, \mathbf{x}) - F_{-1}(\mathbf{W}_{-1}, \mathbf{x})$, where

$$F_j(\mathbf{W}_j, \mathbf{x}) = \sum_{r=1}^m \sum_{p=1}^2 \sigma(\langle \mathbf{w}_{j,r}, \mathbf{x}^{(p)} \rangle), \ j \in \{-1, 1\}.$$

Here, for $j \in \{+1, -1\}$ and $r \in [m]$, we use $\mathbf{w}_{j,r}$ to denote the *r*-th convolution filter with second layer weight *j*, and use \mathbf{W}_j to denote the collection of $\mathbf{w}_{j,1}, \ldots, \mathbf{w}_{j,m}$. The activation function $\sigma(\cdot)$ is the Huberized-ReLU function.

We consider cross-entropy loss. The loss at a data point (\mathbf{x}, y) is given as $\mathcal{L}(\mathbf{W}, \mathbf{x}, y) = \ell[y \cdot f(\mathbf{W}, \mathbf{x})]$, where $\ell(z) = \log(1 + \exp(-z))$. For a set of data points S, we also define

$$\mathcal{L}(\mathbf{W}, \mathcal{S}) = \frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, y) \in \mathcal{S}} \mathcal{L}(\mathbf{W}, \mathbf{x}, y).$$
(0.1)

Following the data model given in Definitions 1 and 2, We define the test loss achieved by a CNN with weights ${f W}$ as

$$\mathcal{L}_{\text{test}}(\mathbf{W}) := \mathbb{E}_{\tilde{\boldsymbol{\nu}} \sim \Pi, (\mathbf{x}, y) \sim \mathcal{D}(\tilde{\boldsymbol{\nu}})} \ell(y \cdot f(\mathbf{W}, \mathbf{x})).$$
(0.2)

Train-train method

Train-train: for each task k, we use all of the samples for adapting the parameter in the inner-loop updates. Specifically, the meta objective is to minimize

$$\widehat{\mathcal{L}}^{\text{tr-tr}}(\mathbf{W}, \{\mathcal{S}_k\}_{k=1}^{\mathcal{K}}) = \frac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}} \mathcal{L}(\widetilde{\mathbf{W}}(\mathbf{W}, \mathcal{S}_k), \mathcal{S}_k), \qquad (0.3)$$

where $\mathbf{W}(\mathbf{W}, \mathcal{S}_k)$ represents the weights of the network after J gradient descent steps (w.r.t. loss $\mathcal{L}(\cdot, \mathcal{S}_k)$) starting from \mathbf{W} with step size γ . The FOMAML algorithm updates the CNN weights using the following update rule:

$$\mathbf{W}^{(t+1)} = \mathbf{W}^{(t)} - \eta \cdot \frac{1}{\kappa} \sum_{k=1}^{\kappa} \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}, \mathcal{S}_k) |_{\mathbf{W} = \widetilde{\mathbf{W}}(\mathbf{W}^{(t)}, \mathcal{S}_k)}.$$
(0.4)

Train-validation method

Train-validation: for each task k, we split the data with index sets $\mathcal{I}_k^{\text{tr}} = \{1, \ldots, n_1\}$ and $\mathcal{I}_k^{\text{val}} = \{n_1 + 1, \ldots, n\}$. We then use $\mathcal{S}_k^{\text{tr}} = \{(\mathbf{x}_{k,i}, y_{k,i})\}_{i \in \mathcal{I}_k^{\text{tr}}}$ as the training data set, and $\mathcal{S}_k^{\text{val}} = \{(\mathbf{x}_{k,i}, y_{k,i})\}_{i \in \mathcal{I}_k^{\text{val}}}$ as the validation data set. The meta objective of the train-validation method is to minimize

$$\widehat{\mathcal{L}}^{\text{tr-val}}(\mathbf{W}, \{\mathcal{S}_k\}_{k=1}^{K}) = \frac{1}{K} \sum_{k=1}^{K} \mathcal{L}(\widetilde{\mathbf{W}}(\mathbf{W}, \mathcal{S}_k^{\text{tr}}), \mathcal{S}_k^{\text{val}}), \qquad (0.5)$$

where $\mathbf{W}(\mathbf{W}, \mathcal{S}_k^{\text{tr}})$ represents the weights of the network after J gradient descent steps (w.r.t. loss $\mathcal{L}(\cdot, \mathcal{S}_k^{\text{tr}})$) starting from \mathbf{W} with step size γ . For the train-validation method, the FOMAML algorithm implements the following outer-loop update rule to train the network:

$$\mathbf{W}^{(t+1)} = \mathbf{W}^{(t)} - \eta \cdot \frac{1}{K} \sum_{k=1}^{K} \nabla_{\mathbf{W}} \mathcal{L}(\mathbf{W}, \mathcal{S}_{k}^{\mathrm{val}})|_{\mathbf{W} = \widetilde{\mathbf{W}}(\mathbf{W}^{(t)}, \mathcal{S}_{k}^{\mathrm{tr}})}.$$
 (0.6)

Condition 4.1

There exists $\sigma_s > 0$ such that $(1/2) \cdot \sigma_s \sqrt{d} \le ||\mathbf{z}_i||_2 \le (3/2) \cdot \sigma_s \sqrt{d}$ for $i \in [M]$, and $\langle \mathbf{z}_i, \mathbf{z}_j \rangle \le \mathcal{O}(\sigma_s^2 \cdot \sqrt{d \log(d)})$ for all $i \ne j$.

Condition 4.2

$$\begin{split} \|\boldsymbol{\nu}\|_2 &= 1, \, \sigma_{\xi} = d^{-1/2} \cdot \operatorname{polylog}(d), \, \sigma_s = d^{-1/2}/\operatorname{polylog}(d), \, n = \Theta(1), \\ K &= \operatorname{polylog}(d), \, m = \operatorname{polylog}(d), \, \Omega(d^{1/2}) \leq M \leq d/2. \end{split}$$

Condition 4.3

We initialize the CNN weights $\mathbf{W}^{(0)}$ by Gaussian random initialization with standard deviation $\sigma_0 = d^{-1/2}$. We set the inner-loop step size $\gamma = \text{polylog}(d)$, and the outer-loop step size $\eta = 1/\text{polylog}(d)$. We run T = poly(d) outer-loop iterations, and within each outer-loop iteration, we run J = 5 inner-loop gradient descent steps.

Theorem 4.4

Under Conditions 4.1, 4.2 and 4.3, suppose that one uses the train-train method to train the neural network. Then with probability at least $1 - (Kn)^{-10}$,

the training loss is small:

$$\min_{t\in[\mathcal{T}]}\widehat{\mathcal{L}}^{tr-tr}(\mathbf{W}^{(t)},\{\mathcal{S}_k\}_{k=1}^{K})\leq\mathcal{O}\bigg(\frac{1}{\operatorname{poly}(d)}\bigg)$$

2 the test loss is large:

$$\min_{t\in[\mathcal{T}]}\mathcal{L}_{\text{test}}(\mathbf{W}^{(t)})=\Omega(1)\,.$$

Theorem 4.5

Under Conditions 4.1, 4.2 and 4.3, suppose that one uses the train-validation method to train the neural network. Then with probability at least $1 - (Kn)^{-10}$,

the training loss is small:

$$\min_{t\in[\mathcal{T}]}\widehat{\mathcal{L}}^{tr-val}(\mathbf{W}^{(t)},\{\mathcal{S}_k\}_{k=1}^{K})\leq\mathcal{O}\!\left(\frac{1}{\operatorname{poly}(d)}\right).$$

2 the test loss is also small: there exists a constant c > 0 such that

$$\mathcal{L}_{\text{test}}(\mathbf{W}^{(T)}) = \mathcal{O}(\exp(-K^c)).$$

Lemma 6.1 (informal)

Under the train-train method, the inner loop amplifies the noise inner products more than it does to the feature inner products.

Lemma 6.2 (informal)

Under the train-validation method, the inner loop will have an **amplifying effect on the feature inner products**. On the other hand, the inner loop **does not change the noise inner products by a lot**.

The main reason the above lemma holds is because we assumed the **noise** vector has a larger norm than the feature (recall that $\|\boldsymbol{\xi}\|_2 = \Theta(\operatorname{polylog}(d))$, whereas $\|\boldsymbol{\nu}\|_2 = 1$).

Table: Performance comparison of the number of optimization steps in the inner-loop.

# of Inner Steps	Setting	RainbowMNIST	minilmagenet
		Acc ↑	Acc ↑
1 step	Train-Train Train-Validation	$\begin{array}{c} 79.76 \pm 0.41\% \\ 85.83 \pm 0.25\% \end{array}$	$\left \begin{array}{c} 25.09 \pm 1.11\% \\ 25.17 \pm 1.04\% \end{array}\right $
5 steps	Train-Train Train-Validation		$ \begin{vmatrix} 25.93 \pm 1.10\% \\ 46.15 \pm 1.36\% \end{vmatrix}$

Table: Performance w.r.t. the inner-loop learning rate and the outer-loop learning rate.

Setting	Learning Rate	RainbowMNIST miniImagenet	
		Acc ↑	Acc ↑
outer-lr > inner-lr	Train-Train Train-Validation	$ \begin{array}{ } $	$\left \begin{array}{c} 20.00 \pm 0.00\% \\ 20.00 \pm 0.00\% \end{array}\right.$
outer-lr < inner-lr	Train-Train Train-Validation	$ \begin{vmatrix} 65.32 \pm 0.54\% \\ 87.52 \pm 0.20\% \end{vmatrix} $	$ \begin{vmatrix} 20.00 \pm 0.10\% \\ 46.15 \pm 1.36\% \end{vmatrix} $

- C. Finn, P. Abbeel, and S. Levine, "Model-agnostic meta-learning for fast adaptation of deep networks," in *International Conference on Machine Learning*, pp. 1126–1135, PMLR, 2017.
- A. Nichol, J. Achiam, and J. Schulman, "On first-order meta-learning algorithms," *arXiv preprint arXiv:1803.02999*, 2018.
- P. Zhou, X. Yuan, H. Xu, S. Yan, and J. Feng, "Efficient meta learning via minibatch proximal update," *Advances in Neural Information Processing Systems*, vol. 32, 2019.
- Y. Bai, M. Chen, P. Zhou, T. Zhao, J. Lee, S. Kakade, H. Wang, and C. Xiong, "How important is the train-validation split in meta-learning?," in *International Conference on Machine Learning*, pp. 543–553, PMLR, 2021.