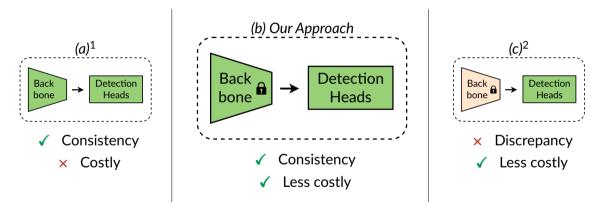

Proposal-Contrastive Pretraining for Object Detection from Fewer Data

<u>Quentin Bouniot</u>^{1.2} Romaric Audigier ¹ Angelique Loesch ¹ Amaury Habrard ^{2.3} ¹CEA-List ²Université Jean Monnet ³Institut Universitaire de France

Object Detectors in a Nutshell



- ► Detectors composed of **backbone model** and **detection-specific heads**.
- ▶ Predict class (Cls) and location (Loc) for each objects in an image.

Pretraining in Object Detection

Overall Pretraining

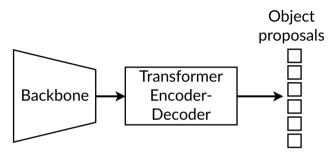
¹Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: *NeurIPS*. 2021

²Zhigang Dai et al. "Up-DETR: Unsupervised pre-training for object detection with transformers". In: CVPR. 2021; Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022

Outline

1 Context

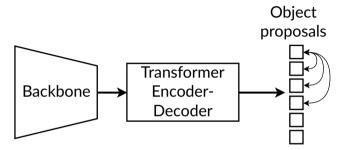
- 2 Proposal Selection Contrast (ProSeCo)
 - Idea
 - Proposal-Contrastive Learning
 - Avoiding Collapse


3 Experimental Results

- Comparison with state of the art
- Ablation Studies

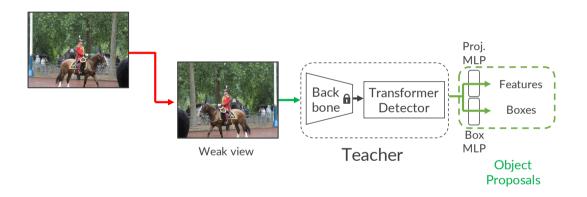
4 Conclusion

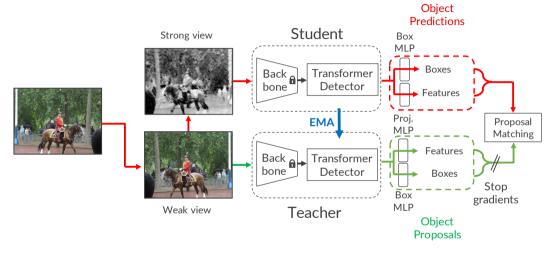
Transformer-based Detectors



▶ Transformer-based detectors generates N proposals $\gg k$ objects in images.

Transformer-based Detectors

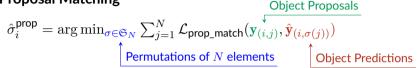



▶ Transformer-based detectors generates N proposals $\gg k$ objects in images.

Contribution: Contrastive learning between proposals.

Object Proposals from Teacher are matched with Predictions from Student.

Bouniot et al.



Unsupervised Proposal Matching $\hat{\sigma}_{i}^{\text{prop}} = \arg \min_{\sigma \in \mathfrak{S}_{N}} \sum_{j=1}^{N} \mathcal{L}_{\text{prop}_match}(\mathbf{y}_{(i,j)}^{(i,j)}, \hat{\mathbf{y}}_{(i,\sigma(j))})$ $Permutations of N \text{ elements} \qquad Object Predictions$

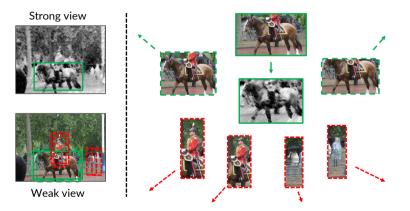
▶ Proposal *j* found by the **teacher** associated to prediction $\hat{\sigma}_i^{\text{prop}}(j)$ of the **student**.

Unsupervised Proposal Matching

▶ Proposal *j* found by the **teacher** associated to prediction $\hat{\sigma}_i^{\text{prop}}(j)$ of the **student**.

Matching Cost \mathcal{L}_{prop_match} depends on:

► features similarity $\blacktriangleright L_1$ loss of box coordinates \blacktriangleright generalized IoU loss

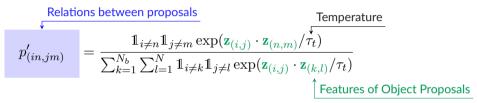


Naive way

× Close proposals considered as negative examples.

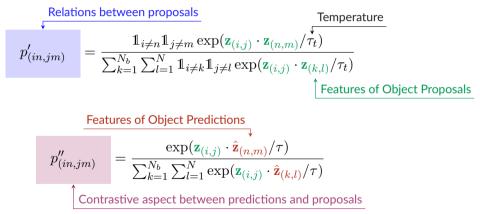
Localization-aware Contrastive loss

Strong view



✓ **Overlapping** proposals are considered as **positive** examples.

10UZ8


Soft Contrastive Estimation (SCE) loss function³

³ Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023. Bouniot et al.

Soft Contrastive Estimation (SCE) loss function³

³ Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023. Bouniot et al.

Localization-aware similarity distribution

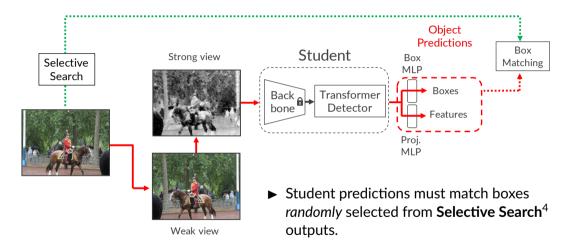
$$w_{(in,jm)}^{\text{Loc}} = \lambda_{\text{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \ge \delta} + (1 - \lambda_{\text{SCE}}) \cdot p'_{(in,jm)}$$

$$\uparrow \text{IoU between proposals in same image above threshold between pro$$

Localization-aware similarity distribution

$$w_{(in,jm)}^{\mathsf{Loc}} = \lambda_{\mathsf{SCE}} \cdot \mathbb{1}_{i=n} \mathbb{1}_{IoU_i(j,m) \ge \delta} + (1 - \lambda_{\mathsf{SCE}}) \cdot p'_{(in,jm)}$$

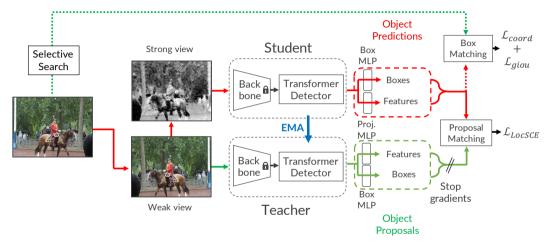
$$\uparrow \mathsf{IoU} \text{ between proposals in same image above threshold}$$


Localized SCE (LocSCE) function

$$\mathcal{L}_{\text{LocSCE}}(\mathbf{y}, \hat{\mathbf{y}}, \hat{\sigma}^{\text{prop}}) = -\frac{1}{N_b N} \sum_{i=1}^{N_b} \sum_{n=1}^{N_b} \sum_{j=1}^{N} \sum_{m=1}^{N} w_{(in,jm)}^{\text{Loc}} \log(p_{(in,j\hat{\sigma}_n^{\text{prop}}(m))}')$$

$$\underline{\text{Effective batch size}}$$

Avoiding Collapse



⁴Jasper RR Uijlings et al. "Selective search for object recognition". In: *IJCV*. 2013. Bouniot et al.

Proposal Selection Contrast (ProSeCo)

► Full pretraining procedure with both contrastive and localization learning.

Pretraining	Detector	Mini-COCO			
		1% (1.2k)	5% (5.9k)	10% (11.8k)	
Supervised	Def. DETR	13.0	23.6	28.6	
SwAV ⁵	Def. DETR	13.3	24.5	29.5	
SCRL ⁶	Def. DETR	16.4	26.2	30.6	
DETReg ⁷	Def. DETR	15.9	26.1	30.9	
Supervised	Mask R-CNN	-	19.4	24.7	
SoCo ^{*8}	Mask R-CNN	-	26.8	31.1	
ProSeCo (Ours)	Def. DETR	18.0	28.8	32.8	

⁵Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: *NeurIPS*. 2020.

⁶Byungseok Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.

⁷Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.

⁸Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: *NeurIPS*. 2021. Bouniot et al.

Method	FSOD-test	FSOD-train	PASCAL VOC	Mini-VOC	
	100% (11k)	100% (42k)	100% (16k)	5% (0.8k)	10% (1.6k)
Supervised	39.3	42.6	59.5	33.9	40.8
DETReg ⁹	43.2	43.3	63.5	43.1	48.2
ProSeCo (Ours)	46.6	47.2	65.1	46.1	51.3

 ProSeCo improves over SOTA on all datasets considered, with various amount of labeled data.

⁹Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022. Bouniot et al.

Pretraining	Dataset	mAP	Loss	δ	mAP
ProSeCo w/ SwAV	COCO	27.4	SCE	1.0	26.1
ProSeCo w/ SwAV	IN	27.8	LocSCE (Ours)	0.2	27.0
DETReg w/ SCRL	IN	28.0	LocSCE (Ours)	0.7	27.1
ProSeCo w/ SCRL	IN	28.8	LocSCE (Ours)	0.5	27.8

- ► Dataset diversity more important than closeness to downstream task
- ✓ **Consistency** in the features improves performance
- Location of proposals helps for introducing easy positives for contrastive learning

We propose ProSeCo, a Proposal-Contrastive Pretraining strategy for Object Detection with Transformers.

- ✓ Leverage high number of Object Proposals for **Proposal-Contrastive Learning**.
- ✓ Our **ProSeCo improves performance** when training with limited labeled data.
- ✓ **Consistency** with object-level features is important for Object Detection.
- ✓ **Location information** helps for Proposal-Contrastive learning.

Thank You !

Do not hesitate to contact us for question !

Bouniot et al., "Proposal-Contrastive Pretraining for Object Detection from Fewer Data"

References I

- Fangyun Wei et al. "Aligning pretraining for detection via object-level contrastive learning". In: *NeurIPS*. 2021.
- Zhigang Dai et al. "Up-DETR: Unsupervised pre-training for object detection with transformers". In: CVPR. 2021.
- Amir Bar et al. "Detreg: Unsupervised pretraining with region priors for object detection". In: CVPR. 2022.
- Julien Denize et al. "Similarity contrastive estimation for self-supervised soft contrastive learning". In: WACV. 2023.
- Jasper RR Uijlings et al. "Selective search for object recognition". In: IJCV. 2013.
- Mathilde Caron et al. "Unsupervised learning of visual features by contrasting cluster assignments". In: *NeurIPS*. 2020.

- Byungseok Roh et al. "Spatially consistent representation learning". In: CVPR. 2021.
- Quentin Bouniot et al. "Proposal-Contrastive Pretraining for Object Detection from Fewer Data". In: *ICLR*. 2023.