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• When train (source) and test (target) domains differ, i.e., domain shi* from source to target, deep neural 
networks (DNNs) suffer from performance degrada1on

• Test-1me adapta1on (TTA) aims to overcome this problem

Introduction
Background: Test-Time Adaptation (TTA)

Source domain Target domain

Domain shi*
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Introduction

• Recent test-1me adapta1on (TTA) methods heavily depend on transduc1ve batch normaliza1on (TBN)
◦ To overcome the weakness of conven&onal batch normaliza&on (CBN), which is vulnerable to domain shi6s
◦ TBN uses test input sta8s8cs for standardiza8on and is robust to the domain shi6s

Background: Test-Time Adaptation (TTA)

Source domain

Shi)ed domain

Shi)ed domain

Source sta*s*cs
(collected from training data)

Test batch sta*s*cs
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Introduction

• TBN-based approaches
◦ Strength

• Successfully mitigate the domain-shift between source and target
◦ Limitation

• Depend on impractical assumptions
◦ Large test batch sizes (e.g., 200 or more), a single stationary target distribution

• We observed that they suffer from serious performance drop when the assumptions are unsatisfied
◦ Performance drops (i.e., error rate increase) in small test batch sizes 

Background: BN layers in TTA

[1] TENT: Fully Test-Time Adaptation (ICLR’21)
[2] Improving Test-Time Adaptation via Shift-agnostic Weight Regularization and Nearest Source Prototypes (ECCV’22)
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* Spoiler: Our proposed method (TTN) overcomes the dependency on imprac8cal assump8ons

Test batch size
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• Test-Time Normaliza1on (TTN) layer
• TTN uses a interpola8on of source and current test batch sta8s8cs using learnable interpola8ng weight 𝛼 for 

standardiza8on

Proposed Method
Test-Time Normalization (TTN) Layer
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Proposed Method
Post-training

• Post-training phase
• We train the TTN parameter 𝜶 during a post-training phase (between pre-train and test 8me)
• In post-training phase, all parameters are frozen except for 𝛼 (i.e., only 𝛼 is trained)

• We train 𝛼 following model’s domain-shi* sensi1vity
• Intui&on: we put more importance on test batch sta&s&cs when the model needs more domain informa&on

TTN parameters (𝜶)
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• Measuring model’s domain-shi* sensi1vity using gradient distance score
◦ We measure the difference between #𝒛 and #𝒛′ by comparing the gradients of the affine parameters 𝛾 and 𝛽

• Intui1on
◦ Large difference between 𝑧̂ and 𝑧̂′ means the layer (or channel) is intensely affected by the domain shiE

i.e., the layer (or channel) is handling domain-related knowledge

Proposed Method
Post-training 1) Obtain Prior 𝒜
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Proposed Method

• Measuring model’s domain-shi* sensi1vity using gradient distance score
◦ We measure the difference between #𝒛 and #𝒛′ by comparing the gradients of the affine parameters 𝛾 and 𝛽
◦ We compute the distance score between two gradients and then define the prior 𝓐

Post-training 1) Obtain Prior 𝒜

Distance score

Prior 𝓐

Cosine similarity
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Proposed Method

• Op1mize 𝛼
◦ Convert CBN layers to TTN layers
◦ Ini8alize 𝛼 with the prior 𝓐
◦ Op8mize 𝛼 with loss = ℒ!" + ℒ#$"

• Regulariza*on with MSE loss: to prevent 𝛼 from moving too far from the ini8al point

Post-training 2) Optimize 𝛼
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Results
Visualization of the optimized 𝛼

Domain informa-on

Seman-c informa-on

𝛼

• Visualiza1on of the op1mized 𝜶
• We observed that the current test batch sta8s8cs are more used (i.e., 𝛼 closer to 1) in shallower layers, where 

domain informa8on is more dominant and vice versa

Shallow layer Deep layer

TBN

CBN
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Results

• Experiments
◦ Tasks

• Image classification (CIFAR-10-C, CIFAR-100-C, ImageNet-C)
• Semantic segmentation (Cityscpase to BDD-100K, Mapiliary, GTA5, SYNTHIA)

◦ Scenarios
1. Single domain adaptation scenario

◦ Adapt to a single corruption type at a time. Reset model parameters whenever corruption type changes.
2. Continuously changing domain adaptation scenario

◦ Continuously update model to different corruption types without resetting.
3. Mixed domain adaptation scenario

◦ Single batch containing multiple corruption types
4. Class imbalanced scenario
5. Adaptation on source domain test samples (i.e., forgetting on source knowledge)

◦ Evaluation settings
• A wide range of test batch sizes (200, 64, 16, 4, 2, and 1)

Experimental results
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Results
Experimental results (selected)
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Summary

• Task
◦ Test-*me adapta*on (TTA), which aims to adapt models towards test data to overcome the performance 

degrada8on caused by distribu*on shiI

• Proposed Method
◦ Test-*me normaliza*on (TTN) layer, a new type of batch normaliza8on layer, which combines source and test batch 

sta*s*cs using channel-wise interpola8ng weights considering the sensi*vity to domain shiI

• Contribu1on
◦ TTN flexibly adapts to new target domains while preserving the well-trained source knowledge
◦ TTN is broadly applicable to other TTA methods, since TTN does not alter training or test-8me schemes 

(backpropaga*on-free adapta8on)
◦ TTN shows robust performance in various prac*cal scenarios: a wide range of test batch sizes (from 200 to 1), and 

three realis8c evalua8on scenarios: sta*onary, con*nuously changing, and mixed domain adapta8on

TTN: A DOMAIN-SHIFT AWARE BATCH NORMALIZATION IN TEST-TIME ADAPTATION
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