
VIPeR: Provably Efficient Algorithm for Offline RL with
Neural Function Approximation

Thanh Nguyen-Tang & Raman Arora
Department of Computer Science, Johns Hopkins University

*top 25% noble papers, ICLR’23 1

Episodic MDP
• Episodic time-inhomogeneous Markov decision process

ℳ = 𝒮,𝒜,H, P, r, d!
• State space 𝒮: finite but exponentially large
• Action space 𝒜: finite but exponentially large
• Episode length H: finite

• Agent interacts with MDP for H steps and then restart the episode
• Unknown Transition kernels P = P!, … , P" , where P# : 𝒮×𝒜 → Δ 𝒮
• Unknown Reward functions r = (r!, … , r"), where r# ∶ 𝒮×𝒜 → 0,1
• Initial state distribution d! ∈ Δ(𝒮)

2

Episodic MDP

• A policy π = π# #∈ % where π#: 𝒮 → Δ 𝒜
• Action-value functions:

Q#
& s, a = 𝔼& ∑'(!% r'| s#, a# = (s, a)

• Value functions
V#
& s = 𝔼& ∑'(!% r'| s# = s

• The optimal policy π∗ maximizes V!& 3

Offline RL

• Offline dataset: collected a priori, 𝒟 = s#
* , a#

* , r#
*

#∈ %
*∈ +

• a#$ ~ µ#(⋅ |s#$), s#%!$ ~ P# ⋅ s#
$, a#

$

• µ is the behavior policy
• K: # number of episodes

• No further interactions with MDP
• Learning objective:

SubOpt >π; s! = V!∗ s! − V!,&(s!)
where >π = OfBlineRLAlgo 𝒟, ℱ , ℱ is some function class (e.g., neural
networks)

4

PEVI algorithm (Jin et al., ICML’21)
• Low-rank MDPs:

r# -,/ = ϕ# s, a 0w#, P# s1 s, a = ϕ# s, a 0ν# s1

• Pessimism design: Computing LCB (lower confidence bound)
PQ# s, a = ϕ# s, a 0 >w# − β||ϕ# s, a ||2!"#

• Λ# = λI + ∑&'!
(ϕ# s#

&, a#
& ϕ# s#

&, a#
&)

• @w#: ERM
• Then, extract >π# greedy w.r.t. PQ#
• PEVI is both statistically efficient and computationally efficient in

low-rank MDPs
• PEVI require data coverage only over an optimal policy

5
[Jin et al., ICML’21] “Is pessimism provably efficient for offline rl?”

Offline RL with Neural Function Approximation

However, in many practical settings, MDPs do not admit any linear
structures

à Desirable to use differentiable function approximator such as
neural networks

6

Background: Neural networks

• Action-value functions are approximated by a two-layer neural net

f x;W =
1
m
V
'(!

3

b' ⋅ ReLU(w'
0x)

• x = s, a ∈ 𝒳 = 𝒮 ×𝒜 ∈ ℝ*
• m: network width
• b+ ~ Unif({−1,1}): fixed during training
• W = w!, w,, … ,w- ∈ ℝ-*: trainable
• W.: initialization of W

• w! ~𝒩(0, "!
#
)

7

NeuraLCB (Nguyen-Tang et al., ICLR)
LCB + neural function approximation
• Use neural network f s, a;W to approximate the action-value function
• Computing LCB:

OQ# s, a = f s, a; OW − β||∇/f s, a; OW ||0!"#
• OW : found by gradient descent
• 𝛻1𝑓 𝑠, 𝑎; O𝑊 : the gradient of the neural network w.r.t. its parameters

• Λ# = λI + ∑&'!
(∇/f s#

&, a#
&; OW ∇/f s#

&, a#
&; OW

)
is the empirical covariance

matrix

• Complexity of computing LCB: (# of network parameters):

[Nguyen-Tang et al., ICLR’22] “Offline neural contextual bandits: Pessimism, Optimization, and Generalization”
8

VIPeR: Implicit pessimism via reward perturbing
• End of Episode: !Q!"# ← 0
• Bootstrapping (backward induction): for h = H,H − 1,… , 1

• Perturb the rewards with independent Gaussian noises ξ$
%,' ~𝒩(0, σ() to create M perturbed

datasets *𝒟$), *𝒟$(, … , *𝒟$*

!𝒟$% = {(s$&, a$&

%'()*

, r$& + !V$"# s$"#& + ξ$
&,%

𝐩𝐞𝐫𝐭𝐮𝐫𝐛𝐞𝐝 3)*()*

)}&∈ 5

• Train a different neural network in each *𝒟$
' to get f(s, a;W')

• Pessimistically estimate
*Q$(s, a) = min

'∈[*]
f(s, a;W')

• Optimize 7π$ s ← argmax.∈𝒜 *Q$ s, a and *V$ s = max
.
*Q$(s, a)

• Move to step h-1 and repeat

9

Value suboptimality of VIPeR

• Conditions:
• Adaptively collected data with coverage of only an optimal policy
• Completeness assumption
• The ensemble size M is polylogarithmically large
• The noise level 𝜎 = 9𝒪(𝐻 d677)
• Small learning rate and sufficiently large training iterations
• The network width m is polynomially large

• Then,

SubOpt 'π; s? ≾ 𝜎𝔼@∗ .
AB?

C

||∇Df sA, aA; 4W ||E9:;

• Same guarantee as NeuraLCB, but no need to compute LCB

10

Comparison

11

Experiment: Neural Contextual Bandits
• LinLCB: LCB + linear
• Lin-VIPeR: Reward perturbing + linear
• NeuralGreedy: FQI + neural
• NeuraLCB: LCB + neural
• Neural-VIPeR: reward perturbing + neural

12

Runtime efficiency
• NeuraLCB spends O K: time in action selection
• Neural-VIPeR spends O 1 in action selection

13

Controlling pessimism

M controls the level of pessimism and nicely correlates with the
decrease of subopt in practice

14

Result in D4RL

• BEAR (Kumar et al., 2019): use MMD
distance to constraint policy to the offline
data

• UWAC (Wu et al., 2021): improves BEAR
using dropout uncertainty

• CQL (Kumar et al., 2020) that minimizes Q-
values of OOD actions

• MOPO (Yu et al., 2020): uses model-based
uncertainty via ensemble dynamics

• TD3-BC (Fujimoto & Gu, 2021): uses
adaptive behavior cloning

• PBRL (Bai et al., 2022): use uncertainty
quantification via disagreement of
bootstrapped Q-functions

15

Summary

We now have a provably efficient & computationally efficient algorithm for
neural function approximation with polynomial sample and runtime under
mild data coverage

Algorithm: perturbed rewards + (Stochastic) gradient descent

Sample complexity: SubOpt 'π = 7𝒪 C<.> ⋅ G ⋅H?@@
I

• K: # samples
• H: horizon
• κ: single-policy concentration coefficient
• d677: effective dimension

Future Work

• Match the lower bound in terms of 𝜅?

• Avoid the need of training an ensemble of 𝑀 models?

• General-purpose offline RL with any regression oracle?

• Can randomized value iteration obtain a horizon-free rate?

• Extension to the POMDP?

• Model-free posterior sampling for offline RL with optimal frequentist rates?

17

Thank you
More details at our paper: https://openreview.net/forum?id=WOquZTLCBO1

18

https://openreview.net/forum?id=WOquZTLCBO1

