

Contrastive Meta-Learning for Partially Observable Few-Shot Learning

Adam Jelley¹, Amos Storkey¹, Antreas Antoniou¹, Sam Devlin²

1 School of Informatics, University of Edinburgh

2 Microsoft Research Cambridge

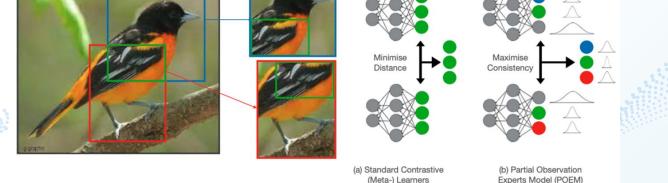
Learning Representations from Partial Observations

 Many contrastive and meta-learning approaches learn representations by identifying common features in multiple views

However, the formalism for these approaches generally **assumes features to be shared across views** to be captured coherently

 We consider the problem of learning a unified representation from partial observations, where useful features may be present in only some of the views

Partial Observation Experts Modelling (POEM)



- Standard contrastive (meta-) learners **minimise relative distance** between representations to learn features that are consistent in views
- For partial observations, we instead want to maximise consistency by utilising representation uncertainty to capture which features of the entity are present in a view
- We achieve consistency **using a product of experts model** (Hinton, 2002) to combine and unify individual view representations that **weights features by their uncertainty**
- Since it is not obvious how to do so, we must **meta-learn** how to integrate views

POEM Theoretical Formalism

We consider a set S of V^m partial observations of M items where V^m can vary with m: $S = \{X^m | m = 1, 2, \dots, M\} \text{ where } X^m = \{x_1^m, x_2^m, \dots, x_{V^m}^m\}.$

From a given support set X^m, we can compute a product of experts distribution z^m:

$$p(\mathbf{z}^m | \mathbf{X}^m) = \frac{p(\mathbf{z}^m) \prod_{v=1}^{V^m} \phi(\mathbf{z}^m | \mathbf{x}_v^m)}{\int d\mathbf{z}' \ p(\mathbf{z}') \prod_{v=1}^{V^m} \phi(\mathbf{z}' | \mathbf{x}_v^m)}$$

We can also compute the probability that a query view x^{*} would be generated from z^m:

$$p(\mathbf{x}^*|\mathbf{z}^m) = \frac{p(\mathbf{x}^*)\phi(\mathbf{z}^m|\mathbf{x}^*)}{p(\mathbf{z}^m)}$$

POEM Theoretical Formalism

These probabilities can be combined by marginalising over z^m to get the **marginal predictive**:

$$\begin{split} p(\mathbf{x}^* | \mathbf{X}^m) &= \int d\mathbf{z}^m \ p(\mathbf{x}^* | \mathbf{z}^m) \ p(\mathbf{z}^m | \mathbf{X}^m) \\ &= \int d\mathbf{z}^m \ \left(\frac{p(\mathbf{z}^m) \prod_{v=1}^{V^m} \phi(\mathbf{z}^m | \mathbf{x}_v^m)}{\int d\mathbf{z}' \ p(\mathbf{z}') \prod_{v=1}^{V^m} \phi(\mathbf{z}' | \mathbf{x}_v^m)} \right) \left(\frac{p(\mathbf{x}^*) \phi(\mathbf{z}^m | \mathbf{x}^*)}{p(\mathbf{z}^m)} \right) \\ &= p(\mathbf{x}^*) \left(\frac{\int d\mathbf{z}^m \ \phi(\mathbf{z}^m | \mathbf{x}^*) \prod_{v=1}^{V^m} \phi(\mathbf{z}^m | \mathbf{x}_v^m)}{\int d\mathbf{z}' \ p(\mathbf{z}') \prod_{v=1}^{V^m} \phi(\mathbf{z}' | \mathbf{x}_v^m)} \right) = p(\mathbf{x}^*) \frac{\lambda(\mathbf{x}^*, \mathbf{X}^m)}{\lambda'(\mathbf{X}^m)} \end{split}$$

where $\lambda(\mathbf{y}, \mathbf{X}) = \int d\mathbf{z} \, \phi(\mathbf{z}|\mathbf{y}) \prod_{v=1}^{V} \phi(\mathbf{z}|\mathbf{x}_{v}), \quad \text{and} \quad \lambda'(\mathbf{X}) = \int d\mathbf{z} \, p(\mathbf{z}) \prod_{v=1}^{V} \phi(\mathbf{z}|\mathbf{x}_{v}).$

POEM Theoretical Formalism

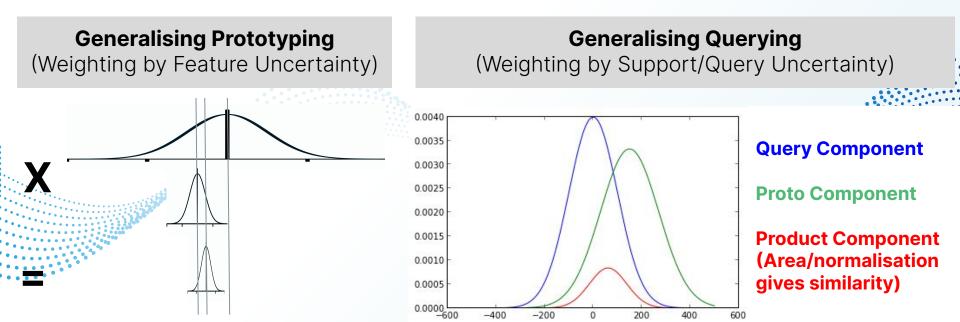
We can now **maximise the probability** that a given query view x^{*} comes from the correct corresponding item X^m, providing a **negative log likelihood objective** to be minimised:

$$\mathcal{L}(\{S_t\}, \{x_t^*\}) = -\sum_t \left[\log \frac{\lambda(\mathbf{x}^*, \mathbf{X}^{m^*})}{\lambda'(\mathbf{X}^{m^*})} - \log \sum_m \frac{\lambda(\mathbf{x}^*, \mathbf{X}^m)}{\lambda'(\mathbf{X}^m)} \right]$$

$$\text{where} \quad \lambda(\mathbf{y},\mathbf{X}) = \int d\mathbf{z} \ \phi(\mathbf{z}|\mathbf{y}) \prod_{v=1}^V \phi(\mathbf{z}|\mathbf{x}_v), \quad \text{and} \quad \lambda'(\mathbf{X}) = \int d\mathbf{z} \ p(\mathbf{z}) \prod_{v=1}^V \phi(\mathbf{z}|\mathbf{x}_v).$$

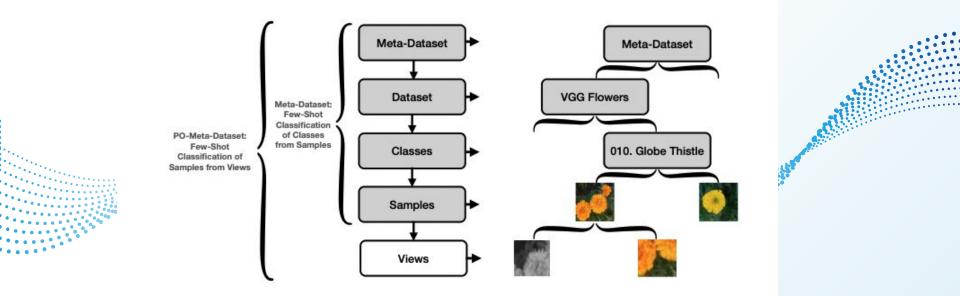
Interpretation of POEM Objective

- POEM generalises Prototypical Networks to a probabilistic latent space (with approximate equivalence when all uncertainties equal)
- This enables fair **comparison** of **partial** support and query views



Partially Observable Meta-Dataset

We adapt the **Meta-Dataset** (Triantafillou et al., 2020) few-shot learning benchmark (dataset of few-shot datasets) to **incorporate partial observability** with strong cropping and standard contrastive augmentations



Results

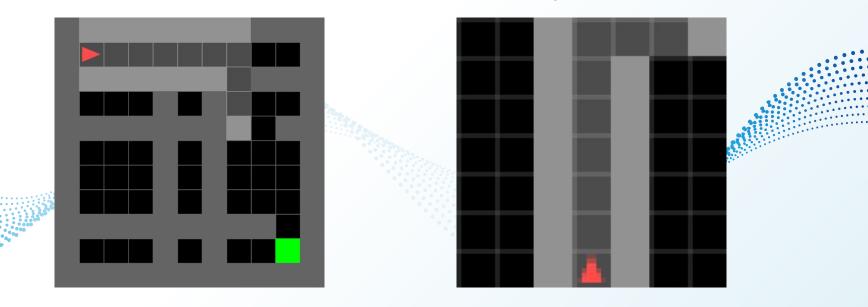
POEM outperforms common meta-learning baselines at few-shot learning from partial observations, while matching state-of-the-art on fully-observable (standard) Meta-Dataset.

		2 202		0.	
DO-Mata Dataati	Test Source	Finetune	ProtoNet	MAML	POEM
PO-Meta-Dataset:	Aircraft	46.5 ± 0.6	48.5 ± 1.0	37.5 ± 0.3	55.3 ± 0.7
	Birds	62.6 ± 0.7	67.4 ± 1.2	52.5 ± 0.6	$\textbf{71.1} \pm \textbf{0.1}$
	Flowers	48.5 ± 0.4	46.4 ± 0.7	33.5 ± 0.3	49.2 ± 1.5
	Fungi	61.0 ± 0.2	61.4 ± 0.4	46.1 ± 0.4	64.8 ± 0.3
	Omniglot	71.3 ± 0.1	87.8 ± 0.1	47.4 ± 1.0	89.2 ± 0.7
	Textures	83.2 ± 0.4	76.7 ± 1.6	73.1 ± 0.4	81.4 ± 0.6
Meta-Dataset:	Test Source	Finetune	ProtoNet	MAML	POEM
Meta-Dataset.	Aircraft	56.2 ± 1.1	47.2 ± 1.2	35.9 ± 1.8	46.5 ± 1.5
. Starter Start	Birds	52.6 ± 1.8	78.3 ± 0.5	65.2 ± 0.3	79.4 ± 0.3
	Flowers	80.1 ± 2.0	84.2 ± 0.7	70.4 ± 0.4	83.6 ± 1.3
	Fungi	33.6 ± 1.7	84.7 ± 0.2	18.9 ± 0.2	81.0 ± 0.1
	Omniglot	89.6 ± 3.3	98.7 ± 0.1	94.7 ± 0.1	98.6 ± 0.1
	Textures	60.4 ± 1.0	65.3 ± 1.2	56.1 ± 0.3	65.7 ± 0.8

All methods use a modernised, ImageNet-pretrained ResNet-18 backbone for fair comparison.

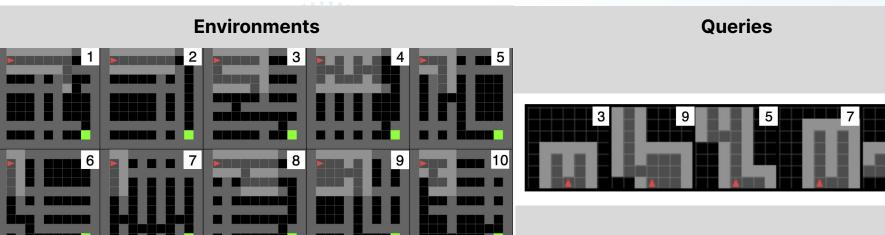
Application of POEM to Reinforcement Learning Agents in POMDPs

Many reinforcement learning environments are partially observable (POMDPs), and it may be helpful for an **agent** to **learn an environment** representation from its partial observations, e.g. in a maze:



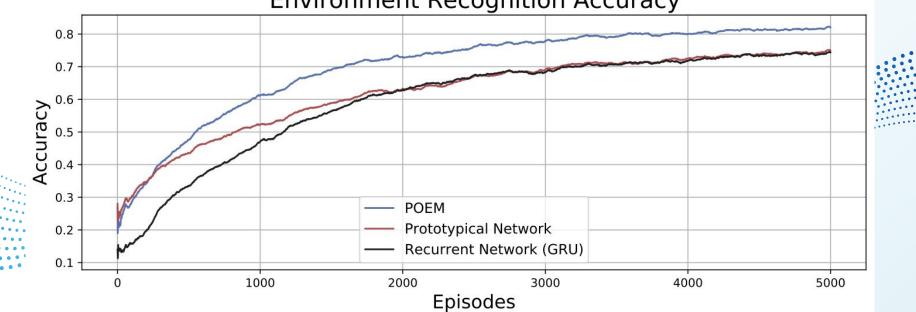
Training POEM on Agent Observations

- POEM can be used as an encoder, and can be trained in an equivalent few-shot manner (meta-learned) from offline data:
 - Given a trajectory of partial observations from a set of environments, and a new observation viewpoint, can you determine which environment the observation is from?



Environment Recognition Results

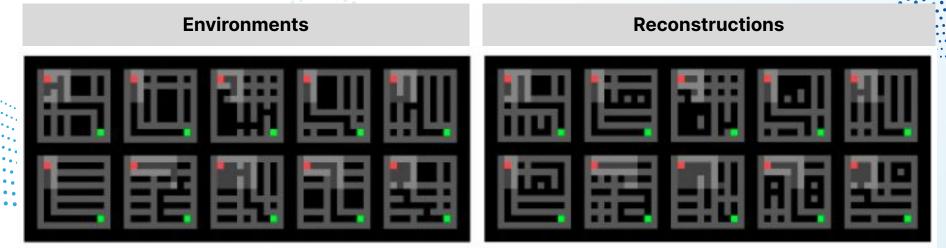
POEM demonstrates **benefits** over both meta-learning and recurrent network baselines at environment observation recognition



Environment Recognition Accuracy

Investigating the Learned Representation

- Decoder can be trained on learned representations to generate environment map
- POEM encoder could now be used online to integrate partial agent observations into updateable environment representation, or decoded into online environment map



 Introduced POEM, a contrastive meta-learning approach for few-shot learning in partially observable settings

 Probabilistic formalism enables consistent contrastive representation learning from partial observations

Potential application to learning representations of an environment from agent-centric observations