Correlative Information Maximization Based Biologically Plausible Neural Networks for Correlated Source Separation

ICLR 2023

Bariscan Bozkurt^{1,2} Ates Isfendiyaroglu³ Cengiz Pehlevan⁴ Alper T. Erdogan^{1,2}

- ¹ KUIS AI Center, Koc University, Istanbul, Turkey
- ² Electrical and Electronics Engineering Department, Koc University, Istanbul, Turkey
- ³ Uskudar American Academy
- ⁴ John A. Paulson School of Engineering & Applied Sciences and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA

Goal

We introduce a Biologically Plausible Neural Network Framework exploiting information maximization criterion

Goal

We introduce a Biologically Plausible Neural Network Framework exploiting information maximization criterion

Capable to blindly extract the correlated latent causes

Goal

We introduce a Biologically Plausible Neural Network Framework exploiting information maximization criterion

- Capable to blindly extract the correlated latent causes
- Applicable to a diverse geometric assumptions

Blind Source Separation (BSS) Setup

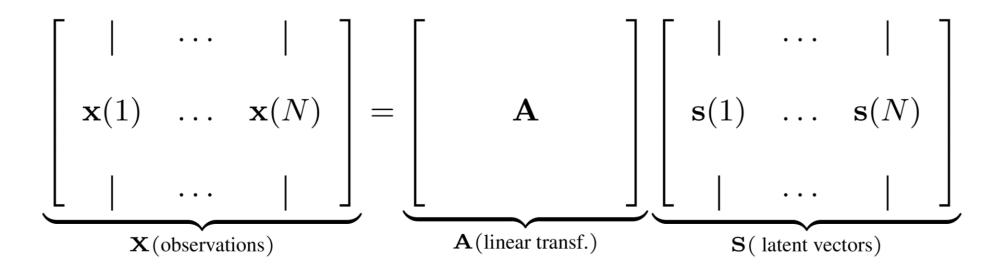
- Blind Source Separation (BSS) Setup
- Definition of Correlative Information (CorInfo)

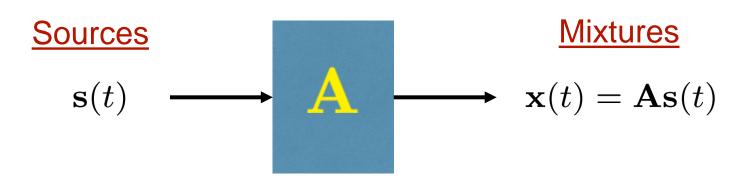
- Blind Source Separation (BSS) Setup
- Definition of Correlative Information (CorInfo)
- Correlative Information Maximization (CorInfoMax) based Blind Source Separation

- Blind Source Separation (BSS) Setup
- Definition of Correlative Information (CorInfo)
- Correlative Information Maximization (CorInfoMax) based Blind Source Separation
- Online CorInfoMax Formulation
 Biologically Plausible Neural Networks

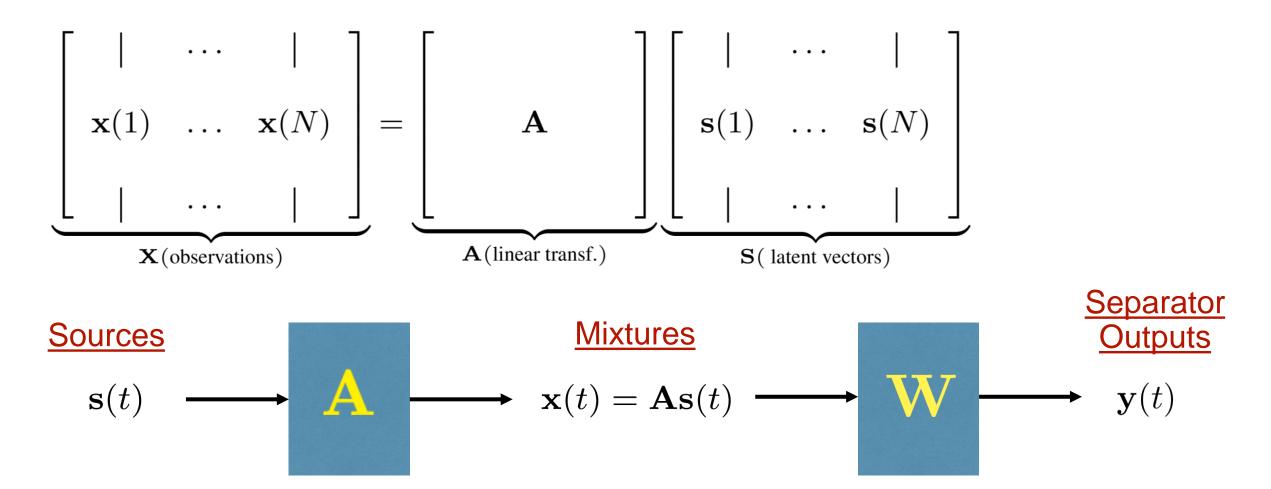
- Blind Source Separation (BSS) Setup
- Definition of Correlative Information (CorInfo)
- Correlative Information Maximization (CorInfoMax) based Blind Source Separation
- Online CorInfoMax Formulation
 Biologically Plausible Neural Networks
- Numerical Experiments and Conclusion

Blind Source Separation Setup

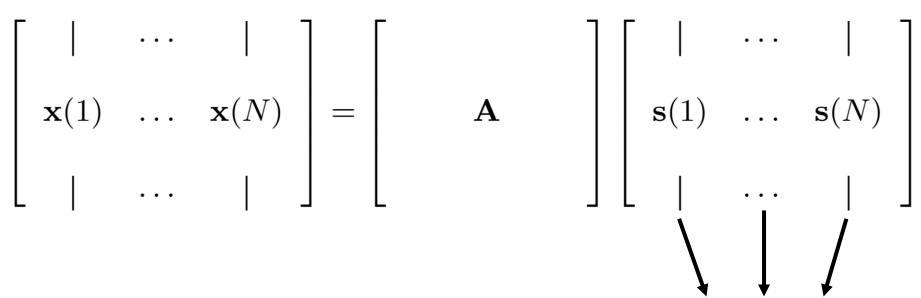




Blind Source Separation Setup

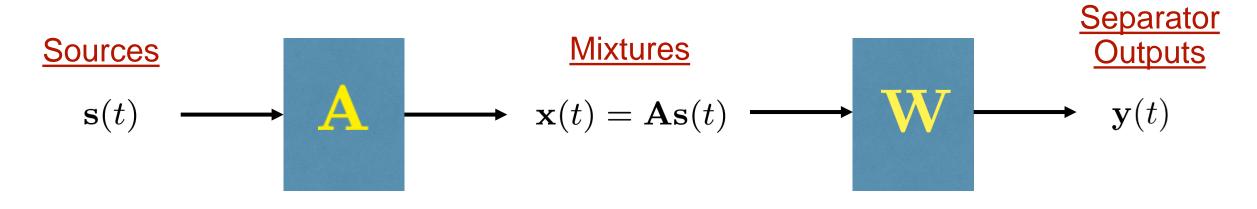


Independent Component Analysis (ICA)



The columns are drawn from a separable pdf.

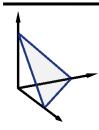
Mutual Independence!



Source Domain

Framework

$$\mathbf{s}(t) \in \mathcal{P} \subseteq \mathbb{R}^n$$



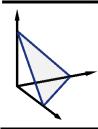
 Δ – Unit Simplex

Nonnegative Matrix Factorization (NMF)

Source Domain

Framework

$$\mathbf{s}(t) \in \mathcal{P} \subseteq \mathbb{R}^n$$



 Δ – Unit Simplex

Nonnegative Matrix Factorization (NMF)

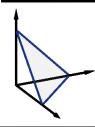
 ℓ_1 – Norm Ball

Sparse Component Analysis (SCA)

Source Domain

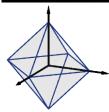
<u>Framework</u>

$$\mathbf{s}(t) \in \mathcal{P} \subseteq \mathbb{R}^n$$



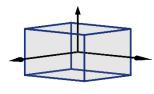
 Δ – Unit Simplex

Nonnegative Matrix Factorization (NMF)



 ℓ_1 – Norm Ball

Sparse Component Analysis (SCA)



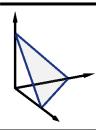
 ℓ_{∞} – Norm Ball

Bounded Component Analysis (BCA)

Source Domain

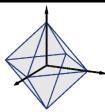
<u>Framework</u>

$$\mathbf{s}(t) \in \mathcal{P} \subseteq \mathbb{R}^n$$



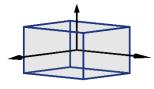
 Δ – Unit Simplex

Nonnegative Matrix Factorization (NMF)



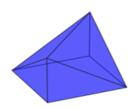
 ℓ_1 – Norm Ball

Sparse Component Analysis (SCA)



 ℓ_{∞} – Norm Ball

Bounded Component Analysis (BCA)



"Identifiable" Polytope

Polytopic Matrix Factorization (PMF)

Correlative (Mutual) Information

For finite two sets of vectors (N vectors) in a Euclidean Space,

Correlative (Mutual) Information

For finite two sets of vectors (N vectors) in a Euclidean Space,

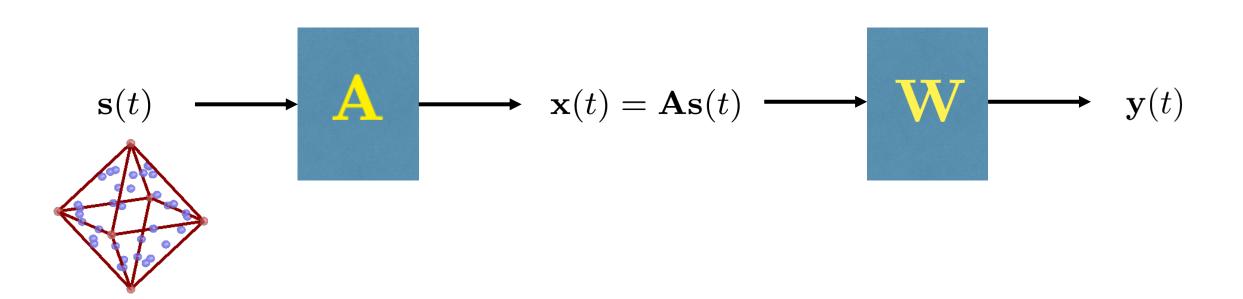
the deterministic correlative mutual information is defined as,

$$I^{(\epsilon)}(\boldsymbol{X}, \boldsymbol{Y}) = H_{LD}^{(\epsilon)}(\boldsymbol{Y}) - H_{LD}^{(\epsilon)}(\boldsymbol{Y}|_{L}\boldsymbol{X})$$

$$= \frac{1}{2} \log \det(\hat{\boldsymbol{R}}_{\boldsymbol{y}} + \epsilon \boldsymbol{I}) - \frac{1}{2} \log \det(\hat{\boldsymbol{R}}_{\boldsymbol{y}} - \hat{\boldsymbol{R}}_{\boldsymbol{x}\boldsymbol{y}}^{T}(\hat{\boldsymbol{R}}_{\boldsymbol{x}} + \epsilon \boldsymbol{I})^{-1}\hat{\boldsymbol{R}}_{\boldsymbol{x}\boldsymbol{y}} + \epsilon \boldsymbol{I})$$

Correlative (Mutual) Information Maximization for BSS

Erdogan (2022) proposes maximizing the correlative information flow from the mixtures to the separator outputs while the outputs are restricted to presumed source domain,



Online CorInfoMax Optimization

The weighted output and error sample autocorrelation matrices are defined as:

$$\hat{\boldsymbol{R}}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k) = \frac{1 - \zeta_{\boldsymbol{y}}}{1 - \zeta_{\boldsymbol{y}}^{k}} \sum_{i=1}^{k} \zeta_{\boldsymbol{y}}^{k-i} \boldsymbol{y}(i) \boldsymbol{y}(i)^{T} \qquad \hat{\boldsymbol{R}}_{\boldsymbol{e}}^{\zeta_{\boldsymbol{e}}}(k) = \frac{1 - \zeta_{\boldsymbol{e}}}{1 - \zeta_{\boldsymbol{e}}^{k}} \sum_{i=1}^{k} \zeta_{\boldsymbol{e}}^{k-i} \boldsymbol{e}(i) \boldsymbol{e}(i)^{T}$$

Online CorInfoMax Optimization

The weighted output and error sample autocorrelation matrices are defined as:

$$\hat{\boldsymbol{R}}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k) = \frac{1 - \zeta_{\boldsymbol{y}}}{1 - \zeta_{\boldsymbol{y}}^{k}} \sum_{i=1}^{k} \zeta_{\boldsymbol{y}}^{k-i} \boldsymbol{y}(i) \boldsymbol{y}(i)^{T} \qquad \hat{\boldsymbol{R}}_{\boldsymbol{e}}^{\zeta_{\boldsymbol{e}}}(k) = \frac{1 - \zeta_{\boldsymbol{e}}}{1 - \zeta_{\boldsymbol{e}}^{k}} \sum_{i=1}^{k} \zeta_{\boldsymbol{e}}^{k-i} \boldsymbol{e}(i) \boldsymbol{e}(i)^{T}$$

The online CorInfoMax optimization can be posed as the following:

maximize
$$\mathbf{y}(k) \in \mathbb{R}^n$$
 $\mathcal{J}(\mathbf{y}(k)) = \frac{1}{2} \log \det(\hat{\mathbf{R}}_{\mathbf{y}}^{\zeta_{\mathbf{y}}}(k) + \epsilon \mathbf{I}) - \frac{1}{2} \log \det(\hat{\mathbf{R}}_{\mathbf{e}}^{\zeta_{\mathbf{e}}}(k) + \epsilon \mathbf{I})$ subject to $\mathbf{y}(k) \in \mathcal{P}$.

Online CorInfoMax Optimization

The weighted output and error sample autocorrelation matrices are defined as:

$$\hat{\boldsymbol{R}}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k) = \frac{1 - \zeta_{\boldsymbol{y}}}{1 - \zeta_{\boldsymbol{y}}^{k}} \sum_{i=1}^{k} \zeta_{\boldsymbol{y}}^{k-i} \boldsymbol{y}(i) \boldsymbol{y}(i)^{T} \qquad \hat{\boldsymbol{R}}_{\boldsymbol{e}}^{\zeta_{\boldsymbol{e}}}(k) = \frac{1 - \zeta_{\boldsymbol{e}}}{1 - \zeta_{\boldsymbol{e}}^{k}} \sum_{i=1}^{k} \zeta_{\boldsymbol{e}}^{k-i} \boldsymbol{e}(i) \boldsymbol{e}(i)^{T}$$

The online CorInfoMax optimization can be posed as the following:

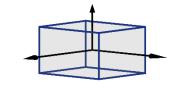
The online regularized least square problem for the best linear MMSE matrix from mixtures to source estimates:

Output Updates

$$e(k; \nu) = y(k; \nu) - W(k)x(k),$$

$$\nabla_{y(k)} \mathcal{J}(y(k; \nu)) = \gamma_{y} B_{y}^{\zeta_{y}}(k)y(k; \nu) - \gamma_{e} B_{e}^{\zeta_{e}}(k)e(k; \nu),$$

$$y(k; \nu + 1) = \sigma_{1} \left(y(k; \nu) + \eta_{y}(\nu)\nabla_{y(k)}\mathcal{J}(y(k; \nu))\right),$$



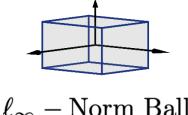
 ℓ_{∞} – Norm Ball

Output Updates

$$e(k; \nu) = y(k; \nu) - W(k)x(k),$$

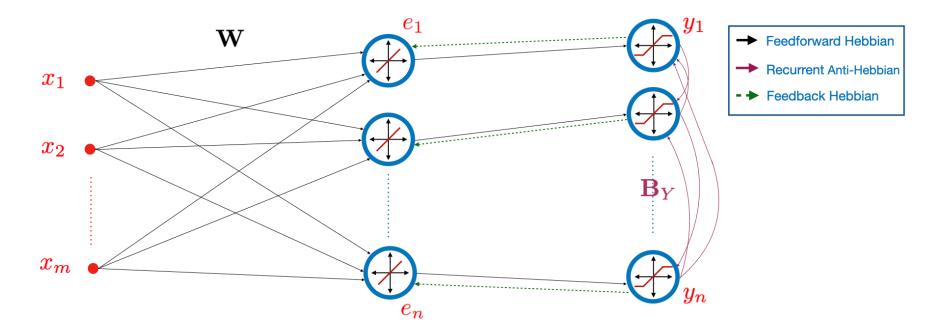
$$\nabla_{y(k)} \mathcal{J}(y(k; \nu)) = \gamma_{y} B_{y}^{\zeta_{y}}(k)y(k; \nu) - \gamma_{e} B_{e}^{\zeta_{e}}(k)e(k; \nu),$$

$$y(k; \nu + 1) = \sigma_{1} \left(y(k; \nu) + \eta_{y}(\nu)\nabla_{y(k)} \mathcal{J}(y(k; \nu))\right),$$

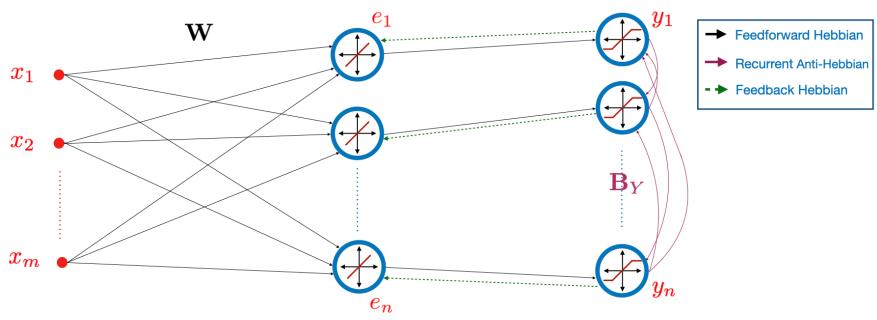


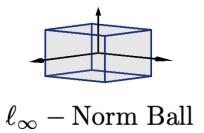
 ℓ_{∞} – Norm Ball

Anti-sparse CorInfoMax Neural Network



Anti-sparse CorInfoMax Neural Network



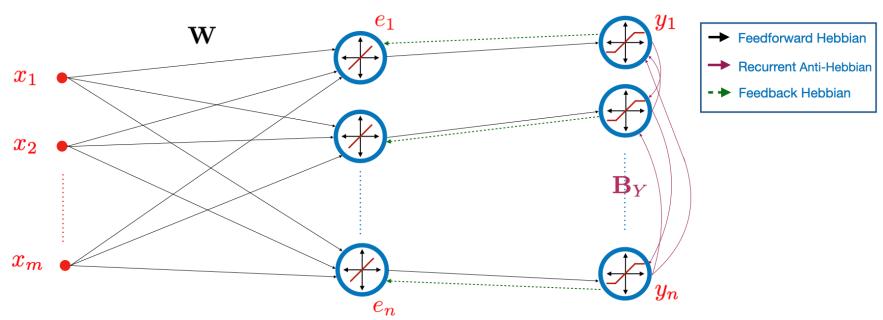


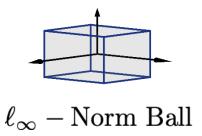
Weight Updates

$$\mathbf{W}(k+1) = \mathbf{W}(k) + \mu_{\mathbf{W}}(k)\mathbf{e}(k)\mathbf{x}(k)^{T},$$

Feed-forward weight

Anti-sparse CorInfoMax Neural Network





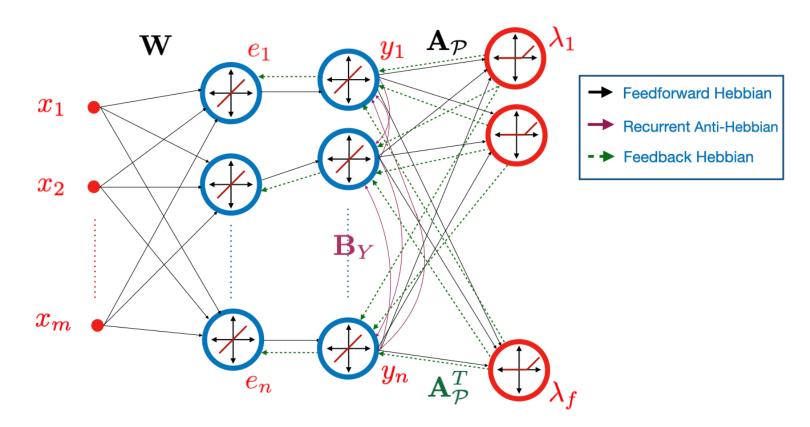
Weight Updates

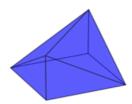
$$\mathbf{W}(k+1) = \mathbf{W}(k) + \mu_{\mathbf{W}}(k)\mathbf{e}(k)\mathbf{x}(k)^{T},$$

Feed-forward weight

$$\boldsymbol{B}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k+1) = \frac{1}{\zeta_{\boldsymbol{y}}}(\boldsymbol{B}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k) - \frac{1-\zeta_{\boldsymbol{y}}}{\zeta_{\boldsymbol{y}}}\boldsymbol{B}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k)\boldsymbol{y}(k)\boldsymbol{y}(k)\boldsymbol{y}(k)^T\boldsymbol{B}_{\boldsymbol{y}}^{\zeta_{\boldsymbol{y}}}(k)). \longrightarrow \quad \text{Lateral weight}$$

Canonical CorInfoMax Network





$$\mathcal{P} = \{oldsymbol{s} \in \mathbb{R}^n | oldsymbol{A}_{\mathcal{P}} oldsymbol{s} \preccurlyeq oldsymbol{b}_{\mathcal{P}} \}$$

Output Updates

$$\mathbf{y}(k; \nu + 1) = \mathbf{y}(k; \nu) + \eta_{\mathbf{y}}(\nu) \nabla_{\mathbf{y}(k)} \mathcal{L}(\mathbf{y}(k; \nu), \boldsymbol{\lambda}(k; \nu)),$$
$$\boldsymbol{\lambda}(k, \nu + 1) = \text{ReLU}(\boldsymbol{\lambda}(k, \nu) - \eta_{\boldsymbol{\lambda}}(\nu)(\boldsymbol{b}_{\mathcal{P}} - \boldsymbol{A}_{\mathcal{P}}\boldsymbol{y}(k; \nu))).$$

Numerical Experiment: Correlated Antisparse Source Separation

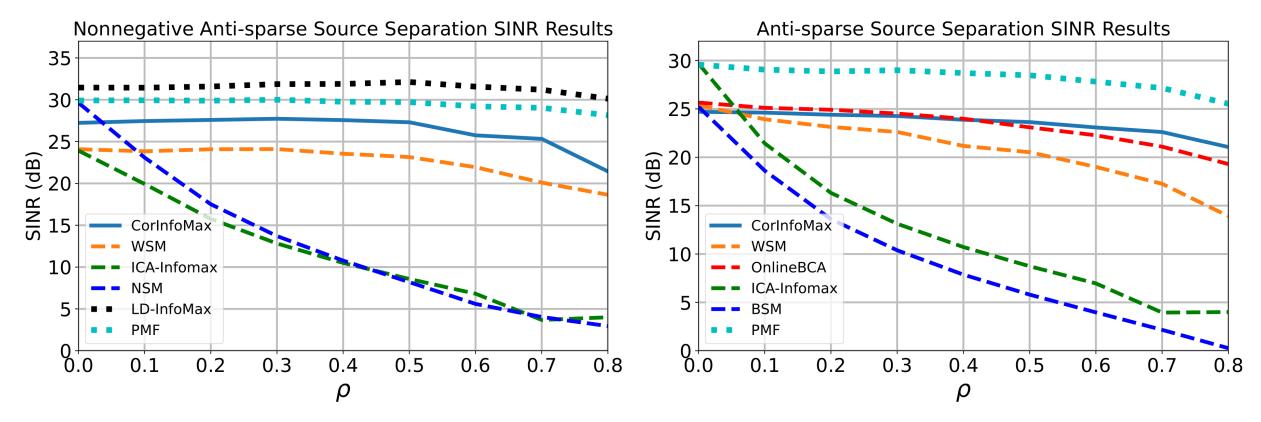


Fig. The SINR performances of CorInfoMax (ours), LD-InfoMax, PMF, ICA-InfoMax, NSM, BSM, and Online-BCA for antisparse source separation experiments. (Averaged over 100 realizations)

Numerical Experiment: Video Separation

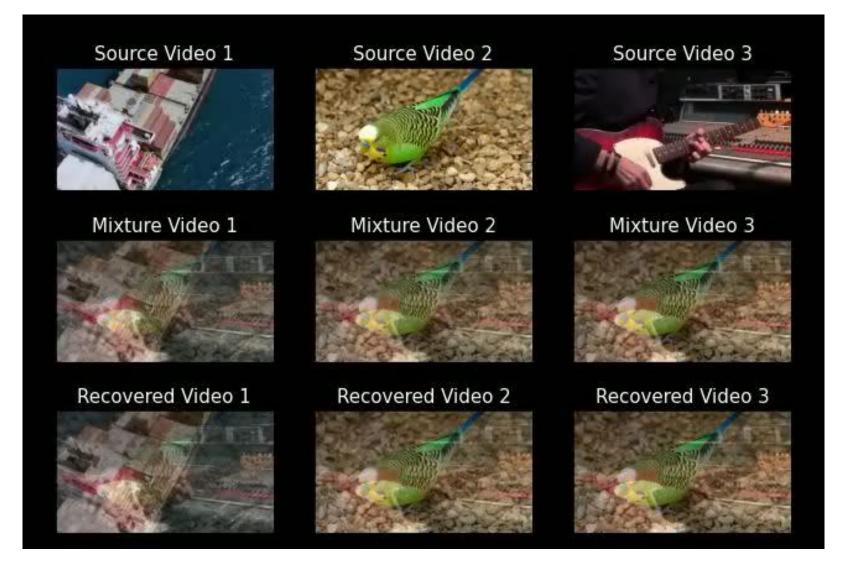


Fig. Video separation experiment of CorInfoMax: (first row) original sources, (second row) mixture videos, (third row) output of CorInfoMax.

Conclusion

- We proposed a novel normative approach for blind source separation problem via information maximization criterion,
- Our online formulation maps to two/three layer recurrent neural networks with local learning rules,
- The resulting framework for generating biologically plausible neural networks are applicable to diverse set of source types,
- We demonstrated diverse numerical experiments on both real and synthetic data for correlated/uncorrelated source separation.
- Our code is publicly available:
 https://github.com/BariscanBozkurt/Biologically-Plausible-Correlative-Information-Maximization-for-Blind-Source-Separation