

Holistic Adversarially Robust Pruning

Qi Zhao and Christian Wressnegger

KASTEL Security Research Labs, Karlsruhe Institute of Technology (KIT), Germany

KIT - The Research University in the Helmholtz Association

www.intellisec.de

Background

Adversarial Robust Pruning (on VGG16 for CIFAR-10)

Concern 1: Model pruning inflicts robustness recession (ICML-W, 2021) Concern 2: Adversarial pruning has only achieved moderate compression

V Learning on layer-specific compression rate

- V Learning on layer-specific compression rate
- V Learning on prunable weight selection

- Learning on layer-specific compression rate
- V Learning on prunable weight selection

HARP: Holistic Adversarially Robust Pruning

Global Compression Control for Robust Pruning

$$\min_{\boldsymbol{r},\boldsymbol{S}} \quad \underbrace{\mathbb{E}}_{(\boldsymbol{x},y)\sim\mathcal{D}}\left[\max_{\delta}\left\{\mathcal{L}_{robust}(\boldsymbol{\theta}\odot\boldsymbol{M},\boldsymbol{x}+\delta,y)\right\}\right] + \gamma \cdot \mathcal{L}_{hw}(\boldsymbol{\theta}\odot\boldsymbol{M},a_t)$$

global robust training on weight selection & layer-specific compression global control on model compression

Global Control on Model Compression

$$\mathcal{L}_{hw}(\hat{oldsymbol{ heta}},a_t) := \max\left\{rac{\Theta_{
eq 0}}{a_t\cdot\Theta} - 1 \;,\; 0
ight\}$$
 , where $\; \hat{oldsymbol{ heta}}^{(l)} = oldsymbol{ heta}^{(l)} \odot oldsymbol{M}^{(l)}$

HARP: Methodological Implementation

Conduction of Pruning Mask

$$\boldsymbol{M}^{(l)} := \left(\mathbb{1}_{s > P(\alpha^{(l)}, \ \boldsymbol{S}^{(l)})}
ight)$$

where: $\alpha^{(l)} = 1 - a^{(l)}$ and $a^{(l)} = g(r^{(l)})$ with $g : r \mapsto (1 - a_{\min}) \cdot \text{sigmoid}(r^{(l)}) + a_{\min}$ $P(\cdot) = \text{percentile of } \alpha^{(l)} \text{ and selection scores } S^{(l)}$

HARP: Methodological Implementation

Conduction of Pruning Mask

$$\pmb{M}^{(l)} := \left(\mathbb{1}_{s > P(lpha^{(l)}, \ \pmb{S}^{(l)})}
ight)$$

where: $\alpha^{(l)} = 1 - a^{(l)}$ and $a^{(l)} = g(r^{(l)})$ with $g: r \mapsto (1 - a_{\min}) \cdot \text{sigmoid}(r^{(l)}) + a_{\min}$ $P(\cdot) = \text{percentile of } \alpha^{(l)} \text{ and selection scores } S^{(l)}$

Learning on Trainable Rates r and Scores S

Back-propagation on non-differentiable operation \odot via "Straight Through Estimation" (STE)

$$\frac{\partial \mathcal{L}}{\partial \mathbf{S}^{(l)}} = \frac{\partial \mathcal{L}}{\partial \hat{\boldsymbol{\theta}}^{(l)}} \cdot \frac{\partial \hat{\boldsymbol{\theta}}^{(l)}}{\partial \mathbf{M}^{(l)}} \cdot \frac{\partial \mathbf{M}^{(l)}}{\partial \mathbf{S}^{(l)}} \qquad \stackrel{\text{STE!}}{=} \frac{\partial \mathcal{L}}{\partial \hat{\boldsymbol{\theta}}^{(l)}} \cdot \frac{\partial \hat{\boldsymbol{\theta}}^{(l)}}{\partial \mathbf{M}^{(l)}} \qquad (\text{NeurIPS, 2016})$$
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}^{(l)}} = \frac{\partial \mathcal{L}}{\partial \hat{\boldsymbol{\theta}}^{(l)}} \cdot \frac{\partial \hat{\boldsymbol{\theta}}^{(l)}}{\partial \mathbf{M}^{(l)}} \cdot \frac{\partial \mathbf{M}^{(l)}}{\partial g(r^{(l)})} \cdot g'(r^{(l)}) \stackrel{\text{STE!}}{=} \langle \frac{\partial \mathcal{L}}{\partial \hat{\boldsymbol{\theta}}^{(l)}} \cdot \frac{\partial \hat{\boldsymbol{\theta}}^{(l)}}{\partial \mathbf{M}^{(l)}} \rangle \cdot g'(r^{(l)}) \qquad (\text{ICML, 2020})$$

The Importance of Learning on Rates r and Scores S

Table: Natural accuracy and PGD-10 adversarial robustness are presented left and right of the / character.

Model	Adv. Training	99 % Sparsity			99.9 % Sparsity			
		HARP-r	HARP-S	HARP	HARP-r	HARP-r HARP-S		
ResNet18	PGD	76.39 / 46.64	72.05 / 43.69	80.25 / 50.36	41.66 / 27.54	57.66 / 35.92	63.99 / 39.39	
	TRADES	73.31 / 45.14	75.50 / 46.37	77.78 / 50.16	73.31 / 45.14	75.50 / 46.37	77.78 / 50.16	
	MART	70.08 / 48.38	75.27 / 47.11	75.88 / 50.79	70.08 / <mark>48.38</mark>	75.27 / 47.11	75.88 / 50.79	
VGG16	PGD	76.17 / 46.74	65.09 / 39.80	78.50 / 48.71	36.76 / 28.02	50.33 / 34.03	59.13 / 37.36	
	TRADES	72.91 / 44.52	66.75 / 41.79	76.46 / 48.01	41.63 / 26.95	56.08 / 31.51	63.43 / 34.64	
	MART	71.63 / 48.64	64.37 / 41.46	73.04 / 51.09	37.19 / 30.68	49.51 / 36.29	55.02 / 39.39	

- HARP-r is beneficial for moderate compression
- HARP-S is important in aggressive compression
- Concurrent optimization on r and S allows HARP to excel

HARP: Experimental Comparison (1)

Comparing Robust Pruning Methods

Figure: Overview of pruning weights of a VGG16 model for CIFAR-10 (left) and SVHN (right) with PGD-10 adversarial training. Solid lines show the natural accuracy of all robust pruning methods. Dashed lines represent the robustness against AUTOATTACK.

HARP: Experimental Comparison (1)

Comparing Robust Pruning Methods with HARP

Figure: Overview of pruning weights of a VGG16 model for CIFAR-10 (left) and SVHN (right) with PGD-10 adversarial training. Solid lines show the natural accuracy of all robust pruning methods. Dashed lines represent the robustness against AUTOATTACK.

HARP: Experimental Comparison (2)

Comparing Robust Pruning Methods with HARP on ImageNet

Attack	FREE-AT	90 % Sparsity			99 % Sparsity			
		R-ADMM	HYDRA	HARP	R-ADMM	HYDRA	HARP	
− PGD C&W∞ APGD AA	60.25 32.82 30.67 31.54 28.79	35.26 ± 0.46 14.35 \pm 0.41 12.35 \pm 0.33 13.53 \pm 0.39 11.01 \pm 0.25	$\begin{array}{c} 49.44 {\pm} 0.37 \\ 23.75 {\pm} 0.33 \\ 21.60 {\pm} 0.27 \\ 23.14 {\pm} 0.27 \\ 19.88 {\pm} 0.29 \end{array}$	55.21 ±0.36 27.10 ±0.41 24.62 ±0.38 25.57 ±0.33 22.57 ±0.41	$\begin{array}{c} 11.41 {\pm} 0.32 \\ 5.15 {\pm} 0.17 \\ 4.03 {\pm} 0.22 \\ 4.85 {\pm} 0.31 \\ 3.69 {\pm} 0.35 \end{array}$	$\begin{array}{c} 27.00{\pm}0.66\\ 12.23{\pm}0.19\\ 11.22{\pm}0.18\\ 12.34{\pm}0.34\\ 10.09{\pm}0.40\end{array}$	$\begin{array}{c} \textbf{34.62} {\pm} 0.36 \\ \textbf{14.67} {\pm} 0.32 \\ \textbf{12.42} {\pm} 0.33 \\ \textbf{13.47} {\pm} 0.34 \\ \textbf{11.24} {\pm} 0.43 \end{array}$	

Table: Comparing HARP with R-ADMM and HYDRA on ResNet50 models for ImageNet.

- R-ADMM (ICCV, 2019) suffers a large robustness recession at sparsity of 90 %
- HYDRA (NeurIPS, 2020) significantly benefits from learnable masks
- HARP shows the prominence of concurrent optimization on rates r and scores S

-

-

HARP: Impact of Layer-specific Non-uniformity (1)

Table: Comparing performance of R-ADMM and HYDRA by using ERK and LAMP and by HARP on CIFAR-10. Natural accuracy and PGD-10 robustness are presented left and right of the / character.

Model	Sparsity		R-ADMM			HYDRA		
		Original	w/ ERK	w/ LAMP	Original	w/ ERK	w/ LAMP	
ResNet18	99 %	71.42 / 42.31	80.36 / <mark>48.38</mark>	80.64 / 48.28	75.53 / 45.84	79.09 / 49.17	80.16 / 50.07	80.25 / 50.36
	99.9 %	26.39 / 20.62	54.51 / 33.06	57.16 / 34.05	34.55 / 26.08	55.73 / 35.09	57.07 / 35.91	63.99 / 39.39
VGG16	99 %	62.28 / 37.54	70.33 / 43.30	74.38 / 46.39	67.33 / 41.47	72.19 / 45.05	76.75 / 47.96	78.58 / 48.71
	99.9 %	21.28 / 17.46	43.35 / 29.11	48.96 / 32.39	23.41 / 20.99	50.38 / 34.32	57.93 / 36.01	59.13 / 37.36

- ERK (ICML, 2020) significantly improves uniform pruning methods
- LAMP (ICLR, 2021) has more promising performance than ERK
- HARP excels in robust pruning, particularly at the sparsity of 99.9 %

HARP: Impact of Layer-specific Non-uniformity (2)

Distribution of layer compression rates

- Non-uniform strategies sacrifice more on middle layers
- HARP favors higher preservation on the front and back layer

HARP: Impact of Layer-specific Non-uniformity (3)

Distribution of layer preserved parameters

- Non-uniform strategies result in a close-uniform distribution
- HARP attaches higher importance to front and back layer

Thank You!

KASTEL Security Research Labs Karlsruhe Institute of Technology (KIT)

https://intellisec.de/team/qi/ f https://github.com/intellisec/harp/ https://intellisec.de/research/harp/

Intelligent System Security Karlaruha Institute of Technology

References

- Lukas Timpl, Rahim Entezari, Hanie Sedghi, Behnam Neyshabur, and Olga Saukh. Understanding the effect of sparsity on neural networks robustness. In *Proc. of the ICML Workshop on Overparameterization: Pitfalls & Opportunities*, July 2021.
- Shaokai Ye, Xue Lin, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun Zhou, Kaisheng Ma, and Yanzhi Wang. Adversarial robustness vs. model compression, or both? In Proc. of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 111–120, 2019.
- Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. HYDRA: Pruning adversarially robust neural networks. In Proc. of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.
- Ozan Özdenizci and Robert Legenstein. Training adversarially robust sparse networks via bayesian connectivity sampling. In Proc. of the International Conference on Machine Learning (ICML), pages 8314–8324, 2021.
- Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural networks. In Proc. of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2016.
- Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnablesparsity. In *Proc. of the International Conference on Machine Learning (ICML)*, 2020.
- Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets winners. In *Proc. of the International Conference on Machine Learning (ICML)*, pages 2943–2952, 2020.
- Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for the magnitude-based pruning. In *Proc. of the International Conference on Learning Representations (ICLR)*, 2021.

