Lower Bounds on the Depth of Integral ReLU

 Neural Networks via Lattice PolytopesChristian Haase

Christoph Hertrich
Georg Loho

UNIVERSITY OF TWENTE.

ICLR 2023

ReLU Neural Networks

What is the class of functions computable by ReLU Neural Networks

 with a certain number of layers?

Universal approximation theorems:

One hidden layer enough to approximate any continuous function.

Universal approximation theorems:

One hidden layer enough to approximate any continuous function.

What about exact representability?

Example: Computing the Maximum of Two Numbers

$$
\max \{x, y\}=\max \{x-y, 0\}+y
$$

Example: Computing the Maximum of Four Numbers

Example: Computing the Maximum of Four Numbers

- Inductively: Max of n numbers with $\left\lceil\log _{2}(n)\right\rceil$ hidden layers.

More Generally ...

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))
Every continuous, piecewise linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU NN with $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers.

More Generally ...

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))
Every continuous, piecewise linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be represented by a ReLU NN with $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers.

- Is logarithmic depth best possible?

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021))
Yes, there are functions which need $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers!

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021))
Yes, there are functions which need $\left\lceil\log _{2}(n+1)\right\rceil$ hidden layers!

This is equivalent to:
Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) $\max \left\{0, x_{1}, \ldots, x_{2} k\right\}$ cannot be represented with k hidden layers.

Results

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) $\max \left\{0, x_{1}, \ldots, x_{2} k\right\}$ cannot be represented with k hidden layers.

Results

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021))

 $\max \left\{0, x_{1}, \ldots, x_{2} k\right\}$ cannot be represented with k hidden layers.- true for $k=1$ (Mukherjee, Basu (2017)): "max $\left\{0, x_{1}, x_{2}\right\}$ is not representable with 1 hidden layer"

Results

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) $\max \left\{0, x_{1}, \ldots, x_{2^{k}}\right\}$ cannot be represented with k hidden layers.

- true for $k=1$ (Mukherjee, Basu (2017)): "max $\left\{0, x_{1}, x_{2}\right\}$ is not representable with 1 hidden layer"
- open for $k \geq 2$:
"Is max\{0, $\left.x_{1}, x_{2}, x_{3}, x_{4}\right\}$ representable with 2 hidden layers?"

Results

> Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) $\max \left\{0, x_{1}, \ldots, x_{2^{k}}\right\}$ cannot be represented with k hidden layers.

- true for $k=1$ (Mukherjee, Basu (2017)):
"max $\left\{0, x_{1}, x_{2}\right\}$ is not representable with 1 hidden layer"
- open for $k \geq 2$:
"Is max\{0, $\left.x_{1}, x_{2}, x_{3}, x_{4}\right\}$ representable with 2 hidden layers?"
- We show:

Conjecture holds for all k if network has only integer weights!

Proof Techniques

- Use tropical geometry to represent NNs as lattice polytopes. (Compare Zhang, Naitzat, Lim (2018))

> Example for $\max \left\{0, x_{1}, x_{2}\right\}:$

Proof Techniques

- Use tropical geometry to represent NNs as lattice polytopes. (Compare Zhang, Naitzat, Lim (2018))

> Example for $\max \left\{0, x_{1}, x_{2}\right\}:$

- Subdivide polytopes "layer by layer" into "easier" polytopes.

Proof Techniques

- Use tropical geometry to represent NNs as lattice polytopes. (Compare Zhang, Naitzat, Lim (2018))

> Example for $\max \left\{0, x_{1}, x_{2}\right\}:$

- Subdivide polytopes "layer by layer" into "easier" polytopes.

- Separate via parity of the normalized volume.

Outlook

To prove general conjecture ...

- Polytopes and subdivisions seem promising.
- Replace volume argument by different separation.

Outlook

To prove general conjecture ...

- Polytopes and subdivisions seem promising.
- Replace volume argument by different separation.

Thanks for watching!

