Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes

Christian Haase

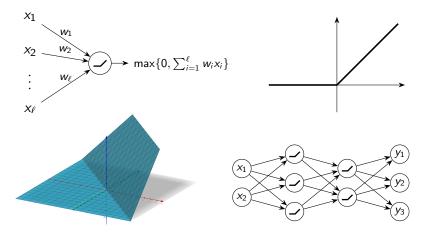
Christoph Hertrich

Georg Loho

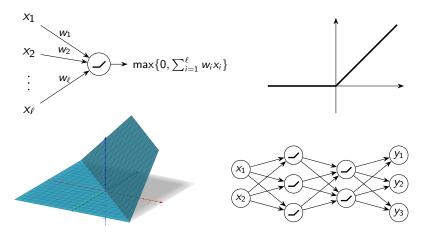
UNIVERSITY OF TWENTE.

ICLR 2023

ReLU Neural Networks

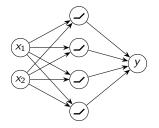


What is the class of functions computable by **ReLU Neural Networks** with a certain number of layers?



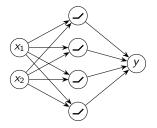
Universal approximation theorems:

One hidden layer enough to approximate any continuous function.



Universal approximation theorems:

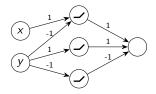
One hidden layer enough to approximate any continuous function.



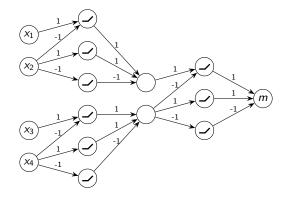
What about exact representability?

Example: Computing the Maximum of Two Numbers

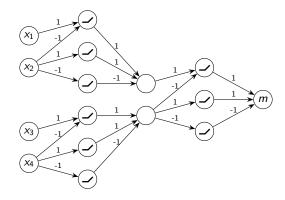
$$\max\{x, y\} = \max\{x - y, 0\} + y$$



Example: Computing the Maximum of Four Numbers



Example: Computing the Maximum of Four Numbers



lnductively: Max of *n* numbers with $\lceil \log_2(n) \rceil$ hidden layers.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018))

Every continuous, piecewise linear function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(n+1) \rceil$ hidden layers.

Theorem (Arora, Basu, Mianjy, Mukherjee (2018)) Every continuous, piecewise linear function $f : \mathbb{R}^n \to \mathbb{R}$ can be represented by a ReLU NN with $\lceil \log_2(n+1) \rceil$ hidden layers.

Is logarithmic depth best possible?

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) Yes, there are functions which need $\lceil \log_2(n+1) \rceil$ hidden layers! Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) Yes, there are functions which need $\lceil \log_2(n+1) \rceil$ hidden layers!

This is equivalent to:

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) max $\{0, x_1, \ldots, x_{2^k}\}$ cannot be represented with k hidden layers.

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) max $\{0, x_1, \ldots, x_{2^k}\}$ cannot be represented with k hidden layers.

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) max $\{0, x_1, \dots, x_{2^k}\}$ cannot be represented with k hidden layers.

true for k = 1 (Mukherjee, Basu (2017)): "max{0, x₁, x₂} is not representable with 1 hidden layer"

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) max $\{0, x_1, \dots, x_{2^k}\}$ cannot be represented with k hidden layers.

- true for k = 1 (Mukherjee, Basu (2017)): "max{0, x₁, x₂} is not representable with 1 hidden layer"
- ▶ open for k ≥ 2: "Is max{0, x₁, x₂, x₃, x₄} representable with 2 hidden layers?"

Conjecture (Hertrich, Basu, Di Summa, Skutella (2021)) max $\{0, x_1, \dots, x_{2^k}\}$ cannot be represented with k hidden layers.

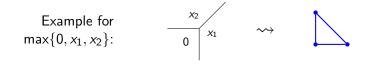
- true for k = 1 (Mukherjee, Basu (2017)): "max{0, x₁, x₂} is not representable with 1 hidden layer"
- ▶ open for k ≥ 2: "Is max{0, x₁, x₂, x₃, x₄} representable with 2 hidden layers?"

We show:

Conjecture holds for all k if network has only integer weights!

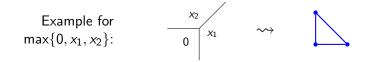
Proof Techniques

 Use tropical geometry to represent NNs as lattice polytopes. (Compare Zhang, Naitzat, Lim (2018))



Proof Techniques

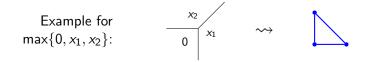
 Use tropical geometry to represent NNs as lattice polytopes. (Compare Zhang, Naitzat, Lim (2018))



Subdivide polytopes "layer by layer" into "easier" polytopes.

Proof Techniques

 Use tropical geometry to represent NNs as lattice polytopes. (Compare Zhang, Naitzat, Lim (2018))



Subdivide polytopes "layer by layer" into "easier" polytopes.

Separate via parity of the normalized volume.

Outlook

To prove general conjecture ...

- Polytopes and subdivisions seem promising.
- Replace volume argument by different separation.

Outlook

To prove general conjecture ...

- Polytopes and subdivisions seem promising.
- Replace volume argument by different separation.

Thanks for watching!