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Setting: Logistic regression

Input: Dataset {x1, . . . , xn}, xi ∈ Rd with labels yi ∈ {−1, 1}.
We search for the empirical risk minimizer β ∈ Rd minimizing

f(β) =
n∑
i=1

ln(1 + exp(−yixiβ)).
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Logistic regression for massive data

Problems:
Too much data to store in the working memory
Limited access to data: data streams
Data is given in pieces or updated dynamically (turnstile streams,
vertically distributed)
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Massive data analysis

Sketch and solve paradigm

X Π−−−−−→ Π X
↓ ↓

f(β | X) ≈ f(β | Π X)

Canonical approach
1 Data reduction X → Π X (fast linear sketch), where |Π X| � |X|
2 Time- and space efficient calculations on Π X
3 Approximation guarantee: solution is close to optimal

3



Massive data analysis

Sketch and solve paradigm

X Π−−−−−→ Π X
↓ ↓

f(β | X) ≈ f(β | Π X)

Canonical approach
1 Data reduction X → Π X (fast linear sketch), where |Π X| � |X|
2 Time- and space efficient calculations on Π X
3 Approximation guarantee: solution is close to optimal

3



Sketching matrix

Π =


S0

S1

...
Shmax


Idea: Subsample the points at different rates: for each entry
randomly choose its level h ∈ N at rate 2−h

Shmax is a uniform sample and S0 is a CountMin-Sketch of the full
data;

To reflect the rarity of entries, buckets of high levels (with few
elements) get a high weight;
Sketch the points at each level: inside the levels we use the
CountMin-Sketch, i.e., we hash points into buckets uniformly at
random and add up entries in the same bucket.
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Analysis

Fix β and set z = Xβ, prove that with high probability following holds:
Contraction bounds: f(Πz) ≥ (1− ε)f(z) (apply a net argument to
show that this holds for any z′ = Xβ′);
Dilation bounds: f(Πz) ≤ kf(z).
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Analysis

Idea: Divide the entries of z into weight classes
W+

q = {i | 2−q ≥ zi
‖z‖1

> 2−(q+1)}.

For any ’relevant’ weight classW+
q there is a level where the

contribution ofW+
q is preserved

The expected contribution of any weight classW+
q to any level is at

most ‖W+
q ‖1 andW+

q contributes to at most k levels

h = 0

h = 1

h = 2

h = hm

q0(2) = 0 q0(3) q0(4)

q1(2)q1(1) q1(3) q1(4)

q2(1) q2(2) q2(3) q2(4)

qhm
(1) qhm

(2) qhm
(3) = qm

. . .

q

Wq is relevant at levels 0, 1, 2.

Wq is well represented at level 1
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Main result

Theorem 1

There is a distribution over sketching matricesΠ ∈ Rr×n such that with
constant probability

1 ΠX has r = O(µd1+c ln(n)2+4c) rows, can be computed in time
O(d ln(n)µ · nnz(X)) and yields an O(1) approximation.

2 ΠX has r = µ2(ε−1 ln(n)d)O(ε−1) rows, can be computed in time
O(nnz(X)) and yields an 1 + ε approximation.

µ = supβ∈Rd\{0}

∑
xiβ>0 |xiβ|∑
xiβ<0 |xiβ|

nnz(X) = number of non-zero entries of X. 7



Other target functions

We get similar results for `1-regression

f(Xβ) = ‖Xβ − y‖1

and logistic regression with variance-based regularization

f(Xβ) =
1

n

n∑
i=1

`(xiβ) +
λ

2n

n∑
i=1

`(xiβ)2 −
λ

2

(
1

n

n∑
i=1

`(xiβ)

)2

= E(`(xβ)) +
λ

2
· Var(`(xβ)).
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