

Almost Linear Constant-Factor Sketching for ℓ_{1} and Logistic Regression

joint work with A. Munteanu (TU Dortmund) and D. Woodruff (CMU)

Setting: Logistic regression

- Input: Dataset $\left\{x_{1}, \ldots, x_{n}\right\}, x_{i} \in \mathbb{R}^{d}$ with labels $y_{i} \in\{-1,1\}$.

■ We search for the empirical risk minimizer $\beta \in \mathbb{R}^{d}$ minimizing

$$
f(\beta)=\sum_{i=1}^{n} \ln \left(1+\exp \left(-y_{i} x_{i} \beta\right)\right) .
$$

Logistic regression for massive data

Problems:

- Too much data to store in the working memory
- Limited access to data: data streams
- Data is given in pieces or updated dynamically (turnstile streams, vertically distributed)

Massive data analysis

Sketch and solve paradigm

Massive data analysis

Sketch and solve paradigm

Canonical approach
11 Data reduction $X \rightarrow \Pi X$ (fast linear sketch), where $|\Pi X| \ll|X|$
2 Time- and space efficient calculations on ΠX
3 Approximation guarantee: solution is close to optimal

Sketching matrix

$$
\Pi=\left(\begin{array}{c}
S_{0} \\
S_{1} \\
\vdots \\
S_{h_{\max }}
\end{array}\right)
$$

- Idea: Subsample the points at different rates: for each entry randomly choose its level $h \in \mathbb{N}$ at rate 2^{-h}
$-S_{h_{\max }}$ is a uniform sample and S_{0} is a CountMin-Sketch of the full data;

Sketching matrix

$$
\Pi=\left(\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{h_{\max }}
\end{array}\right)
$$

- Idea: Subsample the points at different rates: for each entry randomly choose its level $h \in \mathbb{N}$ at rate 2^{-h}
- $S_{h_{\max }}$ is a uniform sample and S_{0} is a CountMin-Sketch of the full data;
- To reflect the rarity of entries, buckets of high levels (with few elements) get a high weight;
■ Sketch the points at each level: inside the levels we use the CountMin-Sketch, i.e., we hash points into buckets uniformly at random and add up entries in the same bucket.

Analysis

Fix β and set $z=X \beta$, prove that with high probability following holds:

- Contraction bounds: $f(\Pi z) \geq(1-\varepsilon) f(z)$ (apply a net argument to show that this holds for any $z^{\prime}=X \beta^{\prime}$);
- Dilation bounds: $f(\Pi z) \leq k f(z)$.

Analysis

Idea: Divide the entries of z into weight classes
$W_{q}^{+}=\left\{i \left\lvert\, 2^{-q} \geq \frac{z_{i}}{\|z\|_{1}}>2^{-(q+1)}\right.\right\}$.

- For any 'relevant' weight class W_{q}^{+}there is a level where the contribution of W_{q}^{+}is preserved
- The expected contribution of any weight class W_{q}^{+}to any level is at most $\left\|W_{q}^{+}\right\|_{1}$ and W_{q}^{+}contributes to at most k levels

$$
\begin{equation*}
h=h_{m} \tag{m}
\end{equation*}
$$

Main result

Theorem 1

There is a distribution over sketching matrices $\Pi \in \mathbb{R}^{r \times n}$ such that with constant probability
$1 \Pi X$ has $r=O\left(\mu d^{1+c} \ln (n)^{2+4 c}\right)$ rows, can be computed in time $O(d \ln (n) \mu \cdot \mathrm{nnz}(X))$ and yields an $O(1)$ approximation.
2 ΠX has $r=\mu^{2}\left(\varepsilon^{-1} \ln (n) d\right)^{O\left(\varepsilon^{-1}\right)}$ rows, can be computed in time $O(\mathrm{nnz}(X))$ and yields an $1+\varepsilon$ approximation.
$\mu=\sup _{\beta \in \mathbb{R}^{d} \backslash\{0\}} \frac{\sum_{x_{i} \beta>0}\left|x_{i} \beta\right|}{\sum_{x_{i} \beta<0}\left|x_{i} \beta\right|}$
$\mathrm{nnz}(X)=$ number of non-zero entries of X.

Other target functions

We get similar results for ℓ_{1}-regression

$$
f(X \beta)=\|X \beta-y\|_{1}
$$

and logistic regression with variance-based regularization

$$
\begin{aligned}
f(X \beta) & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i} \beta\right)+\frac{\lambda}{2 n} \sum_{i=1}^{n} \ell\left(x_{i} \beta\right)^{2}-\frac{\lambda}{2}\left(\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i} \beta\right)\right)^{2} \\
& =\mathbb{E}(\ell(x \beta))+\frac{\lambda}{2} \cdot \operatorname{Var}(\ell(x \beta)) .
\end{aligned}
$$

