

SFB 876 Providing Information by Resource-Constrained Data Analysis

Almost Linear Constant-Factor Sketching for ℓ_1 and Logistic Regression joint work with A. Munteanu (TU Dortmund) and D. Woodruff (CMU)

Simon Omlor | ICLR 2023

Setting: Logistic regression

- Input: Dataset $\{x_1, \ldots, x_n\}, x_i \in \mathbb{R}^d$ with labels $y_i \in \{-1, 1\}$.
- We search for the empirical risk minimizer $\beta \in \mathbb{R}^d$ minimizing

$$f(\beta) = \sum_{i=1}^{n} \ln(1 + \exp(-\mathbf{y}_i \mathbf{x}_i \beta)).$$

Logistic regression for massive data

Problems:

- Too much data to store in the working memory
- Limited access to data: data streams
- Data is given in pieces or updated dynamically (turnstile streams, vertically distributed)

Massive data analysis

Sketch and solve paradigm

$$\begin{array}{ccc} X & \stackrel{\Pi}{\longrightarrow} & \Pi X \\ \downarrow & & \downarrow \\ f(\beta \mid X) & \approx & f(\beta \mid \Pi X) \end{array}$$

Massive data analysis

Sketch and solve paradigm

ПΧ $\downarrow \qquad \qquad \downarrow \\ \downarrow X) \qquad \approx \quad f(\beta \mid \Pi X)$

Canonical approach

- Data reduction $X \to \prod X$ (fast linear sketch), where $|\prod X| \ll |X|$
- Time- and space efficient calculations on ΠX
- Approximation guarantee: solution is close to optimal

Sketching matrix

$$\Pi = \begin{pmatrix} \mathbf{S}_0 \\ \mathbf{S}_1 \\ \vdots \\ \mathbf{S}_{h_{\max}} \end{pmatrix}$$

- Idea: Subsample the points at different rates: for each entry randomly choose its level $h \in \mathbb{N}$ at rate 2^{-h}
- **S** $_{h_{max}}$ is a uniform sample and S₀ is a CountMin-Sketch of the full data;

Sketching matrix

$$\Pi = \begin{pmatrix} \mathbf{S}_0 \\ \mathbf{S}_1 \\ \vdots \\ \mathbf{S}_{h_{\max}} \end{pmatrix}$$

- Idea: Subsample the points at different rates: for each entry randomly choose its level $h \in \mathbb{N}$ at rate 2^{-h}
- S_{hmax} is a uniform sample and S₀ is a CountMin-Sketch of the full data;
- To reflect the rarity of entries, buckets of high levels (with few elements) get a high weight;
- Sketch the points at each level: inside the levels we use the CountMin-Sketch, i.e., we hash points into buckets uniformly at random and add up entries in the same bucket.

Analysis

Fix β and set $z = X\beta$, prove that with high probability following holds:

- Contraction bounds: $f(\Pi z) \ge (1 \varepsilon)f(z)$ (apply a net argument to show that this holds for any $z' = X\beta'$);
- Dilation bounds: $f(\Pi z) \leq kf(z)$.

Analysis

Idea: Divide the entries of z into weight classes

$$V_q^+ = \{i \mid 2^{-q} \ge \frac{z_i}{\|z\|_1} > 2^{-(q+1)}\}$$

- For any 'relevant' weight class W_q^+ there is a level where the contribution of W_q^+ is preserved
- The expected contribution of any weight class W⁺_q to any level is at most ||W⁺_q||₁ and W⁺_q contributes to at most k levels

Main result

Theorem 1

There is a distribution over sketching matrices $\Pi \in \mathbb{R}^{r \times n}$ such that with constant probability

- **1** IIX has $r = O(\mu d^{1+c} \ln(n)^{2+4c})$ rows, can be computed in time $O(d \ln(n)\mu \cdot \operatorname{nnz}(X))$ and yields an O(1) approximation.
- 2 IIX has $\mathbf{r} = \mu^2 (\varepsilon^{-1} \ln(\mathbf{n}) \mathbf{d})^{\mathbf{0}(\varepsilon^{-1})}$ rows, can be computed in time O(nnz(X)) and yields an $1 + \varepsilon$ approximation.

$$\begin{split} \mu = \sup_{\beta \in \mathbb{R}^d \setminus \{0\}} \frac{\sum_{x_i \beta > 0} |x_i \beta|}{\sum_{x_i \beta < 0} |x_i \beta|} \\ \mathtt{nnz}(X) = \texttt{number of non-zero entries of } X. \end{split}$$

Other target functions

We get similar results for $\ell_1\text{-}\text{regression}$

$$f(X\beta) = \|X\beta - y\|_1$$

and logistic regression with variance-based regularization

$$f(\boldsymbol{X}\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{x}_{i}\boldsymbol{\beta}) + \frac{\lambda}{2n} \sum_{i=1}^{n} \ell(\boldsymbol{x}_{i}\boldsymbol{\beta})^{2} - \frac{\lambda}{2} \left(\frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{x}_{i}\boldsymbol{\beta})\right)^{2}$$
$$= \mathbb{E}(\ell(\boldsymbol{x}\boldsymbol{\beta})) + \frac{\lambda}{2} \cdot \operatorname{Var}(\ell(\boldsymbol{x}\boldsymbol{\beta})).$$