

Quantized Compressed Sensing with Score-Based Generative Models

<u>Xiangming Meng</u> and Yoshiyuki Kabashima

Institute for Physics of Intelligence and Department of Physics The University of Tokyo, Tokyo, Japan

April 9th, 2023

Standard Compressed Sensing (CS)

Standard Compressed Sensing (CS)

Quantized Compressed Sensing (QCS)

Output digital Q(z)Quantizer analog input z

Standard Compressed Sensing (CS)

Quantized Compressed Sensing (QCS)

Output digital Q(z)Quantizer analog input z

Standard Compressed Sensing (CS)

Quantized Compressed Sensing (QCS)

Goal: How to accurately recover signal x from minimal quantized observations y?

Output digital Q(z)Quantizer analog input z A Bayesian Perspective

Bayes' rule

Key idea: The more you know a priori, the less you need

A Bayesian Perspective

$\mathbf{y} = \mathbf{Q}(\mathbf{A}\mathbf{x} + \mathbf{n})$

Posterior Prior Likelihood $p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y})}$ priori, the less you need

Thomas Bayes (1702-1761)

• A Bayesian Perspective

Bayes' rule

Key idea: The more you know a priori, the less you need

Score-based Generative Models (SGM, also known as diffusion models)

SGM credited to **CVPR 2022 Tutorial**

Data

Reverse denoising process

Annealed Langevin dynamics (ALD)

A Bayesian Perspective

$\mathbf{y} = \mathbf{Q}(\mathbf{A}\mathbf{x} + \mathbf{n})$

Likelihood Posterior Prior $= \frac{p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x})}{(-1)}$ $p(\mathbf{x} \mid \mathbf{y})$

Fixed forward diffusion process

Generative reverse denoising process

 $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t [\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)] + \sqrt{2\alpha_t \mathbf{z}_t}$ **Score Function**

Thomas Bayes (1702-1761)

Noise

Gaussian Noise

Score-based Models (SGM) as an Implicit Prior

Posterior Score

$$p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y})}$$

Posterior Sampling via Annealed Langevin dynamics (ALD)

Key Problem: How to Compute the Noise-perturbed Likelihood Score?

The prior $p(\mathbf{X})$ is non-informative w.r.t. $p(\mathbf{X}_t | \mathbf{X})$

Assumption 2

The sensing matrix **A** is row-orthogonal, i.e.,

(Approximately) satisfied by many popular CS matrices e.g., DFT, DCT, Hadamard, and random Gaussian matrices, etc.

Two Assumptions

 $p(\mathbf{x}_t \,|\, \mathbf{x}) \propto p(\mathbf{x} \,|\, \mathbf{x}_t)$

Asymptotically accurate when the perturbed noise is negligible

$AA^T = Diagonal matrix$

where

 $\mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t) = [g_1, g_2, \dots, g_M]^T \in \mathbb{R}^{M \times 1}$

Results of Pseudo-likelihood Score

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T \mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t)$

where

$$\mathbf{G}(\boldsymbol{\beta}_{t}, \mathbf{y}, \mathbf{A}, \mathbf{x}_{t}) = [g_{1}, g_{2}, \dots$$
$$\exp\left(-\frac{\tilde{u}_{y_{m}}^{2}}{2}\right) - \exp\left(\frac{1}{2}\right) - \exp\left(\frac{1}{\sqrt{\sigma^{2} + \beta_{t}^{2}}} \| \mathbf{a}_{m}^{T} \|_{2}^{2} \int_{\tilde{l}_{y_{m}}}^{\tilde{u}_{y_{m}}} \exp\left(\frac{1}{\sqrt{\sigma^{2} + \beta_{t}^{2}}} \| \mathbf{a}_{m}^{T} \|_{2}^{2} \| \mathbf{a}_{m}^{T} \|_{2}$$

 Corollary 1.1: In the special case of 1-bit CS, results can be further simplified \tilde{z}_m^2 exp $\sqrt{2\pi(\sigma^2 + \beta_t^2 \| \mathbf{a}_m^T \|_2^2)}$

$$g_{m} = \left[\frac{1 + y_{m}}{2\Phi(\tilde{z}_{m})} - \frac{1 - y_{m}}{2(1 - \Phi(\tilde{z}_{m}))}\right]$$

Results of Pseudo-likelihood Score

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T \mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t)$

where

$$\mathbf{G}(\boldsymbol{\beta}_{t}, \mathbf{y}, \mathbf{A}, \mathbf{x}_{t}) = [g_{1}, g_{2}, \dots$$
$$\exp\left(-\frac{\tilde{u}_{y_{m}}^{2}}{2}\right) - \exp\left(\frac{1}{2}\right) - \exp\left(\frac{1}{\sqrt{\sigma^{2} + \beta_{t}^{2}}} \| \mathbf{a}_{m}^{T} \|_{2}^{2} \int_{\tilde{l}_{y_{m}}}^{\tilde{u}_{y_{m}}} \exp\left(\frac{1}{\sqrt{\sigma^{2} + \beta_{t}^{2}}} \| \mathbf{a}_{m}^{T} \|_{2}^{2} \| \mathbf{a}_{m}^{T} \|_{2}$$

Corollary 1.1: In the special case of 1-bit CS, results can be further simplified

$$g_{m} = \left[\frac{1 + y_{m}}{2\Phi(\tilde{z}_{m})} - \frac{1 - y_{m}}{2(1 - \Phi(\tilde{z}_{m}))}\right]$$

• Corollary 1.2: In the special case of standard CS

 \checkmark Explain the necessity of annealing term in Jalal et al. (2021a) ✓ Extend and improve Jalal et al. (2021a) in the general case

Results of Pseudo-likelihood Score

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T \mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t)$

exp \tilde{z}_m $2\pi(\sigma^2 + \beta_t^2 \| \mathbf{a}_m^T \| \mathbf{z})$

$$p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T (\sigma^2 \mathbf{I} + \beta_t^2 \mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{y} - \mathbf{A} \mathbf{x}_t)$$

QCS-SGM: Quantized Compressed Sensing with SGM

The Proposed QCS-SGM Algorithm

In-Distribution Results on MNIST and CelebA

(a) MNIST, $M = 200, \sigma = 0.05$

The proposed QCS-SGM significantly outperforms existing methods!

Experimental Results

Out-of-Distribution (OOD) Results on FFHQ

Truth

CSGM, 1bit

The proposed QCS-SGM significantly outperforms existing methods!

Experimental Results

BIPG, 1bit

OneShot, 1bit

QCS-SGM, 1-bit

✓ SGM model trained on CelebA dataset Images tested on FFHQ dataset

QCS-SGM, 2-bit

QCS-SGM, 3-bit

High-Resolution (256*256) Image Results on FFHQ

1-bit

PSNR: 11.64 dB, SSIM: 0.500 PSNR: 24.18 dB, SSIM: 0.695 PSNR: 26.71 dB, SSIM: 0.753

Figure 1: Reconstructed images of our QCS-SGM for one FFHQ 256 × 256 high-resolution RGB test image ($N = 256 \times 256 \times 3 = 196608$ pixels) from noisy heavily quantized (1bit, 2-bit and 3-bit) CS 8× measurements $\mathbf{y} = \mathbf{Q}(\mathbf{Ax} + \mathbf{n})$, i.e., $M = 24576 \ll N$. The measurement matrix $\mathbf{A} \in \mathbb{R}^{M \times N}$ is i.i.d. Gaussian, i.e., $A_{ij} \sim \mathcal{N}(0, \frac{1}{M})$, and a Gaussian noise \mathbf{n} is added with standard deviation $\sigma = 10^{-3}$.

The proposed QCS-SGM can accurately recover high-resolution images from a small number of heavily quantized noisy measurements!

Experimental Results

2-bit

3-bit

Ground Truth

Thank you!