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Background and Problem Setup
• Standard Compressed Sensing (CS) 

Goal:  Recover the high-dimensional signal  x from as few observations y as possible  
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Observations

• Quantized Compressed Sensing (QCS) Quantization is essential 

Goal:  How to accurately recover signal  x from minimal quantized observations y? 
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✓ An extreme case: 1-bit quantization

1-bit CS: Hardware friendly



• A Bayesian Perspective

Bayes’ rule

PriorPosterior Likelihood

p(x |y) =
p(x)p(y |x)

p(y)
Key idea: The more you know a priori, the less you need

   A Bayesian Perspective



   A Bayesian Perspective
• A Bayesian Perspective

Bayes’ rule

PriorPosterior Likelihood

p(x |y) =
p(x)p(y |x)

p(y)

• Score-based Generative Models (SGM, also known as diffusion models)

xt+1 = xt + αt[∇xt
log p(xt)] + 2αtzt

SGM  
 credited to  

CVPR 2022 Tutorial

Key idea: The more you know a priori, the less you need

Reverse denoising process 

Annealed Langevin dynamics (ALD)

Score Function Gaussian Noise



Score-based Models (SGM) as an Implicit Prior
• Posterior Score

∇xlog p(x |y) = ∇xlog p(x) + ∇xlog p(y |x)
Posterior score Prior score Likelihood score

p(x |y) =
p(x)p(y |x)

p(y)

xt+1 = xt + αt[∇xt
log p(xt) + ∇xt

log p(y |xt)] + 2αtzt

noise-perturbed prior 
(from pre-trained SGM)

noise-perturbed likelihood score 
(from quantized measurements)

• Posterior Sampling via Annealed Langevin dynamics (ALD) intractable！

Key Problem: How to Compute the Noise-perturbed Likelihood Score?



Two Assumptions
• Assumption 1

The prior             is non-informative w.r.t. p(xt |x)

p(xt |x) ∝ p(x |xt)

AAT = Diagonal matrix

(Approximately) satisfied by many popular CS matrices 
 e.g., DFT, DCT, Hadamard,  and random Gaussian matrices, etc. 

p(x)

Asymptotically accurate when the perturbed noise is negligible

• Assumption 2

The sensing matrix A is row-orthogonal, i.e., 



Results of Pseudo-likelihood Score
• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

G(βt, y, A, xt) = [g1, g2, . . . , gM]T ∈ ℝM×1
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• Corollary 1.1: In the special case of 1-bit CS, results can be further simplified 
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• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score
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• Corollary 1.2: In the special case of standard CS 

∇xt
log p(y ∣ xt) = AT(σ2I + β2

t AAT)−1 (y − Axt)

✓Explain the necessity of annealing term in Jalal et al. (2021a) 
✓Extend and improve Jalal et al. (2021a) in the general case

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score



The Proposed QCS-SGM Algorithm
• QCS-SGM: Quantized Compressed Sensing with SGM

Only this term is different 
from SGM！



Experimental Results
• In-Distribution Results on MNIST and CelebA

The proposed QCS-SGM significantly outperforms existing methods!



Experimental Results
• Out-of-Distribution (OOD) Results on FFHQ

The proposed QCS-SGM significantly outperforms existing methods!

✓SGM model trained on CelebA dataset
✓Images tested on FFHQ dataset



Experimental Results
• High-Resolution (256*256) Image Results on FFHQ

The proposed QCS-SGM can accurately recover high-resolution images 
from a small number of heavily quantized noisy measurements!



Thank you!
Q&A


