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Training Vision Transformers

[1] Dai, Zihang, et al. "Coatnet: Marrying convolution and attention for all data sizes." Advances in Neural Information Processing Systems 34 (2021): 
3965-3977.
[2] Wortsman, Mitchell, et al. "Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time." 
International Conference on Machine Learning. PMLR, 2022.
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Training giant ViTs for superior performances often come with huge training costs.

• Model soups[2]

• ViT-G/14 with Greedy Soup

• 90.94 acc1@IN-1K

• 1843M parameters, 2860G FLOPs

• JFT-3B dataset pretrained

• CoAtNet[1]

• CoAtNet-7

• 90.88 acc1@IN-1K

• 2440M parameters, 2586G FLOPs

• JFT-3B dataset pretrained

• 20.1K TPUv3-core-days

(Wortsman et al., 2022)



Training Vision Transformers

• How to train models with less training cost?

• Flexible training schedules[1]

• Compressing activations to reduce memory[2]

• Dynamic training-stage complexity, dropping[3] or stacking[4] layers

[1] Wu, Chao-Yuan, et al. "A multigrid method for efficiently training video models." Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition. 2020.
[2] Pan, Zizheng, et al. "Mesa: A memory-saving training framework for transformers." arXiv preprint arXiv:2111.11124 (2021).
[3] Zhang, Minjia, and Yuxiong He. "Accelerating training of transformer-based language models with progressive layer dropping." Advances in Neural 
Information Processing Systems 33 (2020): 14011-14023.
[4] Gong, Linyuan, et al. "Efficient training of bert by progressively stacking." International conference on machine learning. PMLR, 2019.
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(Wu et al., 2020) (Pan et al., 2021) (Gong et al., 2022)



Budgeted Training for ViT

• Many labs cannot afford to train ViT under full schedule.

• To train a better model under constrained training budget.

• Budgeted Training is proposed to fit the budget.

• Learning rates schedules with fewer epochs[1,2]

• Dataset pruning with fewer data[3,4]

[1] Li, Mengtian, Ersin Yumer, and Deva Ramanan. "Budgeted Training: Rethinking Deep Neural Network Training Under Resource 
Constraints." International Conference on Learning Representations. 2020
[2] Chen, John, Cameron Wolfe, and Tasos Kyrillidis. "REX: Revisiting Budgeted Training with an Improved Schedule." Proceedings of Machine 
Learning and Systems 4 (2022): 64-76.
[3] Killamsetty, Krishnateja, et al. "Grad-match: Gradient matching based data subset selection for efficient deep model training." International 
Conference on Machine Learning. PMLR, 2021.
[4] Mirzasoleiman, Baharan, Jeff Bilmes, and Jure Leskovec. "Coresets for data-efficient training of machine learning models." International 
Conference on Machine Learning. PMLR, 2020.
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Redundancy During Training ViT
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• Redundancy in attention heads during training
• CKA similarity between features on every two attention heads in DeiT-S

• Features between heads are more similar at early to middle training stage

• Activate fewer attention heads at early training stage!



Redundancy During Training ViT
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• Redundancy in MLP hidden dimension during training
• PCA of projected features in expanded hidden space of MLP in DeiT-S

• Ratio of principal components are growing along with training

• Activate fewer MLP hidden dimensions at early training stage!



Redundancy During Training ViT
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• Redundancy in visual tokens during training
• Class attention distribution visualization of DeiT-S

• Patches with higher scores concentrate along with training

• Activate smaller number of tokens at early training stage!



Proposed Approach
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Dynamically adjust activation rates of ViT components



Experiment Results
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• Main results on ImageNet-1K
• Various model architectures, including DeiT, PVTv2, Swin Transformer

• Outperforms various budgeted training baselines

• Consistent improvements on different training budgets



Experiment Results
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• Competitive transfer learning results on downstream tasks
• DeiT-S on CIFAR-10/100 finetuned classification

• Swin-S and PVTv2-b2li on MSCOCO object detection with Mask-RCNN, 1x & 3x schedule

• Swin-S and PVTv2-b2li on ADE20K semantic segmentation with various models



Experiment Results
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• Comparison over dataset pruning method
• Better performances on models with similar FLOPs

• Consistent improvements on various training budget

• Significant margin in low budget scheme



Thank you!
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