

Budgeted Training for Vision Transformer

Zhuofan Xia^{*[1]}, Xuran Pan^{*[1]}, Xuan Jin^{*[3]}, Yuan He^[3], Hui Xue^[3], Shiji Song^[1], Gao Huang^{+[1,2]}

[1] Department of Automation, BNRist, Tsinghua University[2] Beijing Academy of Artificial Intelligence[3] Alibaba Group

* Equal Contribution + Corresponding Author

May 01, 2023

Training Vision Transformers

Method	ImageNet acc. (top-1, %)	Distribution shifts					
ViT-G (Zhai et al., 2021) CoAtNet-7 (Dai et al., 2021)	90.45 90.88	_					
<i>Our models/evaluations based on ViT-G:</i> ViT-G (reevaluated) 90.47 82.06							
Best model in hyperparam search	90.78	84.68					
Greedy soup	90.94	85.02					

⁽Wortsman et al., 2022)

- CoAtNet^[1]
 - CoAtNet-7
 - 90.88 acc1@IN-1K
 - 2440M parameters, 2586G FLOPs
 - JFT-3B dataset pretrained
 - 20.1K TPUv3-core-days
- Model soups^[2]
 - ViT-G/14 with Greedy Soup
 - 90.94 acc1@IN-1K
 - 1843M parameters, 2860G FLOPs
 - JFT-3B dataset pretrained

Training giant ViTs for superior performances often come with huge training costs.

[1] Dai, Zihang, et al. "Coatnet: Marrying convolution and attention for all data sizes." Advances in Neural Information Processing Systems 34 (2021): 3965-3977.

[2] Wortsman, Mitchell, et al. "Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time." International Conference on Machine Learning. PMLR, 2022.

Training Vision Transformers

- How to train models with less training cost?
 - Flexible training schedules^[1]
 - Compressing activations to reduce memory^[2]
 - Dynamic training-stage complexity, dropping^[3] or stacking^[4] layers

[1] Wu, Chao-Yuan, et al. "A multigrid method for efficiently training video models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[2] Pan, Zizheng, et al. "Mesa: A memory-saving training framework for transformers." arXiv preprint arXiv:2111.11124 (2021).

[3] Zhang, Minjia, and Yuxiong He. "Accelerating training of transformer-based language models with progressive layer dropping." Advances in Neural Information Processing Systems 33 (2020): 14011-14023.

[4] Gong, Linyuan, et al. "Efficient training of bert by progressively stacking." International conference on machine learning. PMLR, 2019.

Budgeted Training for ViT

- Many labs cannot afford to train ViT under full schedule.
 - To train a better model under constrained training budget.
- Budgeted Training is proposed to fit the budget.
 - Learning rates schedules with fewer epochs^[1,2]
 - Dataset pruning with fewer data^[3,4]

[1] Li, Mengtian, Ersin Yumer, and Deva Ramanan. "Budgeted Training: Rethinking Deep Neural Network Training Under Resource Constraints." International Conference on Learning Representations. 2020

[2] Chen, John, Cameron Wolfe, and Tasos Kyrillidis. "REX: Revisiting Budgeted Training with an Improved Schedule." Proceedings of Machine Learning and Systems 4 (2022): 64-76.

[3] Killamsetty, Krishnateja, et al. "Grad-match: Gradient matching based data subset selection for efficient deep model training." International Conference on Machine Learning. PMLR, 2021.

[4] Mirzasoleiman, Baharan, Jeff Bilmes, and Jure Leskovec. "Coresets for data-efficient training of machine learning models." International Conference on Machine Learning. PMLR, 2020.

Redundancy During Training ViT

- Redundancy in attention heads during training
 - CKA similarity between features on every two attention heads in DeiT-S
 - Features between heads are more similar at early to middle training stage
 - Activate fewer attention heads at early training stage!

Redundancy During Training ViT

- Redundancy in MLP hidden dimension during training
 - PCA of projected features in expanded hidden space of MLP in DeiT-S
 - Ratio of principal components are growing along with training
 - Activate fewer MLP hidden dimensions at early training stage!

Redundancy During Training ViT

Class attention distribution during training

- Redundancy in visual tokens during training
 - Class attention distribution visualization of DeiT-S
 - Patches with higher scores concentrate along with training
 - Activate smaller number of tokens at early training stage!

Proposed Approach

Dynamically adjust activation rates of ViT components

Experiment Results

- Main results on ImageNet-1K
 - Various model architectures, including DeiT, PVTv2, Swin Transformer
 - Outperforms various budgeted training baselines
 - Consistent improvements on different training budgets

Experiment Results

Pretrain method CIFAR-10 CIFAR-100 Top-1 Acc. Top-1 Acc.) CII	CIFAR-100		Pre	Pretrain method Schedule Segmentor mIoU						mIoU
		PV	PVTv2-b2linear		r	40K	K S-FPN		45.10			
Original	00 700	0	0 1 1 0	1	Ou	rs (75	% bud	get)	40K	S-1	FPN	45.29
Original	98.78%	8	9.44%	0	Sw	vin-S			160K	Upe	erNet	47.64
Ours (75% budget)	98.91%	8	9.65%	6	Ou	rs (75	% bud	get)	160K	Up	erNet	47.46
					_							
Pretrain method S	chedule AP	$^{o} AP_{50}^{b}$	AP_{75}^b	AP_s^b	AP_m^b	AP_l^b	AP^m	AP_{50}^m	AP_{75}^m	AP_s^m	AP_m^m	AP_l^m
PVTv2-b2linear	1x 44.1	66.3	48.4	28.0	47.4	58.0	40.5	63.2	43.6	21.5	43.0	58.2
Ours (75% budget)	1x 44.1	66.1	48.2	28.3	47.4	57.1	40.3	63.3	43.0	24.7	43.5	54.2
Swin-S	3x 48.5	5 70.2	53.5	33.4	52.1	63.3	43.3	67.3	46.6	28.1	46.7	58.6
Ours (75% budget)	3x 48.2	2 70.2	53.1	32.1	51.7	62.6	43.2	67.0	46.6	27.3	46.8	58.3

- Competitive transfer learning results on downstream tasks
 - DeiT-S on CIFAR-10/100 finetuned classification
 - Swin-S and PVTv2-b2li on MSCOCO object detection with Mask-RCNN, 1x & 3x schedule
 - Swin-S and PVTv2-b2li on ADE20K semantic segmentation with various models

Experiment Results

Method	Model	Schedule / Fraction	Training cost	Top-1 Acc.
GradMatch-PB	ResNet-18	5% of ImageNet	31.9G	45.15
Ours	DeiT-T	[11,15,17]	31.4G	57.88
GradMatch-PB	ResNet-18	10% of ImageNet	63.70G	59.04
Ours	DeiT-T	[8,24,39]	63.23G	60.20
GradMatch-PB	ResNet-18	30% of ImageNet	191.10G	68.12
Ours	DeiT-T	[22,51,127]	190.85G	69.49

- Comparison over dataset pruning method
 - Better performances on models with similar FLOPs
 - Consistent improvements on various training budget
 - Significant margin in low budget scheme

Thank you!

Paper

Contact: xzf20@mails.tsinghua.edu.cn

May 01, 2023