

Offline RL for Natural Language Generation with Implicit Language Q Learning

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine

UC Berkeley

Prompt: You are a helpful, kind, and efficient customer service bot.

Prompt: You are a helpful, kind, and efficient customer service bot.

- 1. Create a dataset of purely positive interactions.
- 2. Finetune on the data.

Good bye.

Please don't come back. Please don't shop with us ever again.

Thank you for shopping with us have a nice day!

Thanks! Please return to shop with us!

- 1. Create a dataset of purely positive interactions.
- 2. Finetune on the data.

Good bye.

- 1. Create a dataset of purely positive interactions.
- 2. Finetune on the data.

Good bye.

- 1. Create a dataset of purely positive interactions.
- 2. Finetune on the data.

Good bye.

Suboptimal Dataset with Rewards	
Good bye.	0
Please don't come back. Please don't shop with us ever again.	-1
Thank you for shopping with us have a nice day!	+1
Thanks! Please return to shop with us!	+1

Suboptimal Dataset with Rewards					
Good bye.	0				
Please don't come back. Please don't shop with us ever again.	-1				
Thank you for shopping with us have a nice day!	+1				
Thanks! Please return to shop with us!	+1				
Pretrained LM					
Offline RL					

Criteria for Reinforcement Learning on Language Tasks

Method / Criteria	Easy to Use	Able to Optimize User Specified Rewards	Practical in Interactive Settings	Able to Leverage Existing Data	Temporally Compositional	
Supervised Learning (BC)	~	×	~		×	
Filtered Fine Tuning (%BC)	~	0	~	~	×	
Online RL	×	~	×	×		
ILQL (ours)	~					

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

- The agent's observation is a history of tokens.
- The action space is the set of possible next tokens in the vocabulary.

POMDP Recap

The policy predicts the next token in an utterance given the history of past utterances.

POMDP Recap

The policy predicts the next token in an utterance given the history of past utterances.

The environment responds to the agent.

POMDP Recap

The policy predicts the next token in an utterance given the history of past utterances.

 π (Have a nice) \rightarrow day

The environment responds to the agent.

The agent gets rewarded at the end of each utterance.

Lots of existing human-to-human dialogues on the internet

We can use offline-RL to extract optimal behaviors from this existing interactive data

Goal: learn a policy π which maximizes the task's expected cumulative reward: $\sum_{t=0}^{t} \mathbf{E}_{a_t,s_t}[r(s_t, a_t)].$

Goal: learn a policy π which maximizes the task's expected cumulative reward: $\sum_{t=0}^{T} \mathbf{E}_{a_t,s_t}[r(s_t, a_t)].$

Constraint: we can only learn from a static dataset \mathcal{D} of interactions and rewards collected by some potentially suboptimal "behavior policy", π_{β} .

Goal: learn a policy π which maximizes the task's expected cumulative reward: $\sum_{t=0}^{T} \mathbf{E}_{a_t,s_t}[r(s_t, a_t)].$

Constraint: we can only learn from a static dataset \mathcal{D} of interactions and rewards collected by some potentially suboptimal "behavior policy", π_{β} .

Method: learn value functions that represent the expected reward for the next token under the policy, and then choose the token that maximizes this value.

Implicit Q Learning

Implicit Q Learning: approximate the support constrained Bellman backup: $Q^*(s, a) = R(s, a) + \gamma \max_{a', \text{s.t. } \pi_{\beta}(a'|s') > 0} Q^*(s', a')$

The in-support maximum is approximated by fitting a value function to an upper expectile of the Q function.

$$L_{V}(\psi) = \mathbf{E}_{(s,a)} \sim_{D} [L_{2}^{\tau}(Q_{\hat{\theta}}(s,a) - V_{\psi}(s))]$$
$$L_{2}^{\tau}(u) = |\tau - \mathbf{1}(u < 0)|u^{2}$$

$$L_Q(\theta) = \mathbf{E}_{(s,a,s')} \underset{\sim D}{\sim} [(R(s,a) + \gamma V_{\psi}(s') - Q_{\theta}(s,a))^2]$$

Implicit Language Q Learning – training

3 transformers:

- 1. Value function transformer (Q/V heads trained with IQL loss)
- 2. π_{β} transformer (standard supervised learning policy)
- 3. Target value function transformer (Polyak averaged copy of 1)

Implicit Language Q Learning – inference

Implicit Language Q Learning – a problem with inference

(

.

.

Implicit Language Q Learning – two solutions

- We can fix this by either pushing down OOD probabilities or Q values.
 - Probabilities: add top-p filter or temperature to the logits
 - Q values: add NLL loss to the Q-values.
- Both work in practice. We find the latter typically requires the least amount of tuning.
- ILQL = IQL loss + CQL loss

Multi-Step Offline RL

• ILQL performs iterative policy improvement.

$$Q^*(s,a) = R(s,a) + \gamma \max_{a',\text{s.t. } \pi_{\beta}(a'|s') > 0} Q^*(s',a')$$

- By fitting Q values to an approximate maximum over actions, we are recursively improving the policy.
- We expect ILQL to outperform methods which only perform a single step of improvement (SARSA).
 - 1. Evaluate behavior policy: $Q_{\pi_{eta}}(s,a) = R(s,a) + \gamma Q_{\pi_{eta}}(s',a')$
 - 2. Improve policy once: $\pi(s) = \max_{a} Q_{\pi_{\beta}}(s, a)$

- We present Wordle as an easy-to-use but challenging objective benchmark task to test offline RL algorithms.
- We use this task to test whether ILQL can perform multiple steps of policy improvement.

- A notional example where we expect single step RL methods to catastrophically fail, and ILQL to succeed.
 - Good utterances tend to start with "The movie was..."
 - Bad utterances start with "The movie wasn't..."
 - But the very best examples also start with "The movie wasn't..."
- The data contains mostly suboptimal examples.
- Therefore, effective planning or multiple steps of policy improvement are needed to find the optimal policy.

- To test ILQL's multiple steps of policy improvement, we instantiate this scenario in Wordle.
- We synthesize a dataset with trajectories from 3 different Wordle policies, each meant to represent one of the paths through the abstract MDP diagram.

- ILQL assigns higher Q values to actions corresponding to paths to the "goal" state.
- SARSA assigns higher Q values to actions corresponding to paths towards the suboptimal S_1 state.
- Confirming that ILQL can perform multiple steps of policy improvement.

Wordle Tweets Data

- Does this finding about multiple steps of policy improvement transfer to more natural data distributions?
- We created a dataset of Wordle games scraped from Twitter.
- ILQL still outperforms single-step SARSA on this more realistic data distribution.

method	Wordle Score
ILQL	-2.13 ± 0.03
SARSA	-2.23 ± 0.03
%BC	-2.38 ± 0.03
BC	-2.61 ± 0.03
$\pi_{ ext{optimal}}$	-1.75 ± 0.02

Visual Dialogue Question Asking Task

- Can ILQL optimize different rewards in a complex dialogue setting?
- We use the Visual Dialogue dataset.
- Our agent asks questions about an image that it cannot see.
- The environment answers.
- 3 rewards: "standard", "y/n", "conservative y/n".

Image Caption: Tour buses are lined up on the street waiting for people. Questioner: how many buses? Answerer: 2 Questioner: what color are buses? Answerer: white and red Questioner: how many people? Answerer: 2 Questioner: what gender are people? Answerer: 1 is male and 1 is female Questioner: what are they wearing? Answerer: 1 is wearing shorts and other is wearing shorts and shirt Questioner: what color is their hair? Answerer: dark brown

Visual Dialogue Quantitative Results

- ILQL outperforms baselines on most reward functions.
- ILQL finds good behavior even when the data is highly suboptimal.
- The optimal ILQL policy for one reward function is not optimal for others.

method	standard	y/n	conservative y/n
ILQL	-5.22 ± 0.13	-5.69 ±0.13	-6.57 ± 0.18
SARSA	-5.14 ± 0.13	-6.19 ± 0.15	-7.77 ± 0.20
%BC	-5.07 ± 0.13	-7.48 ± 0.21	-9.13 ± 0.22
BC	-5.25 ± 0.13	-10.85 ± 0.27	-15.16 ± 0.35

train/eval	standard	y/n	conservative y/n
standard	-5.22 ± 0.13	-11.12 ± 0.30	-14.97 ± 0.36
y/n	-5.41 ± 0.12	-5.69 ± 0.13	-8.24 ± 0.22
conservative y/n	-5.29 ± 0.13	-5.42 ± 0.13	$\textbf{-6.57}\pm0.18$

Visual Dialogue Qualitative Results

Qualitatively, models trained on rewards which penalize yes/no questions ask fewer such questions.

Standard Reward Function:	Yes/No Penalty:	Conservative Yes/No Penalty:
Image Caption: A man, with other people in the background, is sitting at a	Image Caption: A person flying a kite over a sand dune.	Image Caption: Tour buses are lined up on the street waiting for people.
picnic table with a cell phone in front of him while he uses a fork and knife	Questioner: what color is kite?	Questioner: how many buses?
to cut a dessert on a plate.	Answerer: it's black and white	Answerer: 2
Questioner: is man young?	Questioner: is person male or female?	Questioner: what color are buses?
Answerer: yes	Answerer: can't tell	Answerer: white and red
Questioner: is he wearing glasses?	Questioner: what is person wearing?	Questioner: how many people?
Answerer: no	Answerer: i can't tell	Answerer: 2
Questioner: is there food on table?	Questioner: what color is sand?	Questioner: what gender are people?
Answerer: yes	Answerer: dark brown	Answerer: 1 is male and 1 is female
Questioner: is there food on table?	Questioner: is person flying kite flying in air?	Questioner: what are they wearing?
Answerer: yes	Answerer: yes	Answerer: 1 is wearing shorts and other is wearing shorts and shirt
	Questioner: what color is kite?	Questioner: what color is their hair?

Answerer: dark brown

Answerer: black

Reddit Comments Task

- Offline RL can optimize in the face of environment noise.
- Can ILQL optimize its generations of maximally diverse open-domain text when subjected to highly stochastic reward functions based on subjective human judgement?
- We test this using a large dataset of 4 million Reddit comments.
- Optimize agents for two different subjective reward functions:
 - 1. Generating non-toxic comments ("toxicity").
 - Generating positive upvote comments ("upvotes real" and "upvotes model")

Reddit Comments Results

method	toxicity	upvotes real	upvotes model
ILQL	0.0 ±0.0	9.83 ±0.04	10.0 ±0.0
SARSA	0.0 ±0.0	6.23 ± 0.15	10.0 ±0.0
%BC	-0.74 ± 0.07	7.06 ± 0.14	7.86 ± 0.13
BC	-3.51 ± 0.13	4.87 ± 0.16	4.87 ± 0.16

- ILQL obtains the maximum reward on two of the three rewards.
- Fineuning on only non-toxic or positive upvote comments sometimes generates undesirable outputs.
- ILQL is able to more robustly optimize these more subjective, higher-variance reward functions.

Reddit Comments Results

ILQL per-token advantages for toxic comments generated by filtered finetuning model

advantage:	0.1	-0.1	-0.9	-0.5	0.1	0.2	0.0	-0.9	-0.3	-1.1
token:	And	they	censor	your	comments	on	this	horrible	site	

The learned value function assigns a lower advantage to negative words.

Abalations

method	max score	σ w.r.t hparams
ILQL	-5.69 ±0.13	0.42
CQL	-7.32 ± 0.17	1.98
ψ	-10.05 ± 0.18	0.60
SARSA	$\textbf{-6.19} \pm 0.15$	0.27
DT	$\textbf{-6.70} \pm 0.17$	1.15
ILQL (AWR)	-5.96 ± 0.13	2.82
%BC	$\textbf{-7.48} \pm 0.21$	0.72
BC	-10.85 ± 0.27	-

- We abalate the choice of Offline-RL algorithm on the Visual Dialogue "y/n" reward.
- ILQL outperforms prior offline RL methods applied to language models.

Conclusion

- ILQL can be used to ...
 - optimize language models over multi-turn, interactive dialogue tasks.
 - Learn from diverse open-domain text
- We look forward to future work on advancing RL algorithms for interactive language tasks.