Learning Kernelized Contextual Bandits in a Distributed and Asynchronous Environment

Chuanhao Li, Huazheng Wang, Mengdi Wang, Hongning Wang

Distributed Bandit Learning

- For time step t = 1, 2, ..., T
 - An arbitrary client $i_t \in [N]$ becomes active
 - Client i_t picks arm x_t from a time-varying set $\mathcal{A}_t \subseteq \mathbb{R}^d$
 - Client i_t observes reward $y_t = f(x_t) + \eta_t$ from the environment
 - Communication between the server and clients

Example: movie recommendation

cumulative regret vs communication cost

•
$$R_T = \sum_{t=1}^T r_t$$
, where $r_t = \max_{x \in \mathcal{A}_t} f(x) - f(x_t)$

• C_T : total number of scalars transferred in the learning system

Prior Works

	Modeling Assumption	Communication Type	Regret R _T	Communication C_T
[Wang et al., ICLR'20]	linear	synchronous	$O(d\sqrt{T}\log T)$	$ ilde{O}(d^3N^{1.5})$
[Li et al., NeurIPS'22]	RKHS	synchronous	$O(\sqrt{T}\gamma_T)$	$\tilde{O}(\gamma_T^3 N^2)$
[Li and Wang, AISTATS'22, He et al., NeurIPS'22]	linear	asynchronous	$O(d\sqrt{T}\log T)$	$\tilde{O}(d^3N^2)$
more expressive model more robust against stragglers γ_T denotes the maximum information gain				

Contribution of this work

- Propose the first asynchronous algorithm for distributed kernelized contextual bandit
- Still attain the same regret and communication guarantee as synchronous solution

Challenge with Joint Kernel Estimation

Joint kernel estimation is communication expensive

• Empirical mean and variance

$$\hat{\mu}_{t,i}(\mathbf{x}) = \mathbf{K}_{\mathcal{D}_t(i)}(\mathbf{x})^{\top} \left(\mathbf{K}_{\mathcal{D}_t(i),\mathcal{D}_t(i)} + \lambda I \right)^{-1} \mathbf{y}_{\mathcal{D}_t(i)}$$
$$\hat{\sigma}_{t,i}(\mathbf{x}) = \lambda^{-1/2} \sqrt{k(\mathbf{x}, \mathbf{x}) - \mathbf{K}_{\mathcal{D}_t(i)}(\mathbf{x})^{\top} \left(\mathbf{K}_{\mathcal{D}_t(i),\mathcal{D}_t(i)} + \lambda I \right)^{-1} \mathbf{K}_{\mathcal{D}_t(i)}(\mathbf{x})}$$

• where

$$\begin{split} \mathbf{K}_{\mathcal{D}_{t}(i)}(\mathbf{x}) &= \mathbf{\Phi}_{\mathcal{D}_{t}(i)}\phi(\mathbf{x}) = [k(\mathbf{x}_{s}, \mathbf{x})]_{s \in \mathcal{D}_{t}(i)}^{\top} \in \mathbb{R}^{|\mathcal{D}_{t}(i)|} \end{split} \qquad \text{grows linearly wr.t. } T \\ \mathbf{K}_{\mathcal{D}_{t}(i), \mathcal{D}_{t}(i)} &= \mathbf{\Phi}_{\mathcal{D}_{t}(i)}^{\top} \mathbf{\Phi}_{\mathcal{D}_{t}(i)} = [k(\mathbf{x}_{s}, \mathbf{x}_{s'})]_{s, s' \in \mathcal{D}_{t}(i)} \in \mathbb{R}^{|\mathcal{D}_{t}(i)| \times |\mathcal{D}_{t}(i)|} \end{split}$$

Solution Idea

- Communicate $O(\gamma_T)$ dim. embedded statistics to avoid C_T linear in T
 - Adopt Nystrom approximation as prior work [Li, et al. NeurIPS'22]
 - Propose a novel async. update of the dictionary S and embedded statistics \widetilde{A} , \widetilde{b}

Thank you!