Graph Signal Sampling for Inductive One-Bit Matrix Completion: a Closed-form Solution

Chao Chen^{*}, Haoyu Geng, Gang Zeng, Zhaobin Han, Hua Chai, Xiaokang Yang, Junchi Yan

Shanghai Jiao Tong University

Motivation

In recommender systems, for each user the goal is to provide a list of items (e.g., products, movies etc.) based on her historical records (e.g., click, favorite or buy). In the majority of time, the system has the information of **the users** during the training.

What if we need to serve new users?

This motivates the problem of the Inductive One-bit Matrix Completion: given a set of observations Ω_+ consisting only of ones but no zeros, the goal is to recover the underlying vector y from Ω_+ .

Data Modelling

Let **s** denote **a user's** history (e.g., **Charlie**), where $s_i = 1$ only when $i \in \Omega_+$, then $s = y + \xi$,

where $\boldsymbol{\xi}$ is the *discrete* noise that flips ones to zeros.

A Graph Signal Sampling Perspective

1. Graph Definition. Let **R** denotes an item-user rating matrix, then we can have an item-item graph, for example,

$$\boldsymbol{A} = \boldsymbol{R} \boldsymbol{D}_u^{-1} \boldsymbol{R}^T$$

2. Graph Signal Definition. Recall that *s* signifies a user's history, it can be regarded as the values residing on the item vertices, namely a graph signal.

A Graph Signal Sampling Perspective (cont.)

3. Graph Signal Sampling Formulation. Let L denote the graph Laplacian matrix, our goal is to recover the ground-truth y from the observations on a graph vertex subset, namely s.

$$\min_{f} \frac{1}{2} \langle f, K(L)f \rangle + \frac{\varphi}{2} \|f - s\|^2$$

where $K(\blacksquare)$ represents the kernel function on graph. This has a closed-formed solution: $\widehat{y} = (I + K(L)/\varphi)^{-1}s$

A Graph Signal Sampling Perspective (cont.)

Theorem 4 (Error Analysis, extension of Theorem 1.1 in (Pesenson, 2009)). Given $R(\lambda)$ with $\lambda \leq R(\lambda)$ on graph $\mathcal{G} = (V, E)$, assume that $\Omega^c = V - \Omega$ admits the Poincare inequality $\| \phi \| \leq \Lambda \| L\phi \|$ for any $\phi \in L_2(\Omega^c)$ with $\Lambda > 0$, then for any $\mathbf{y} \in PW_{\omega}(\mathcal{G})$ with $0 < \omega \leq R(\omega) < 1/\Lambda$,

$$\| \mathbf{y} - \hat{\mathbf{y}}_k \| \le 2 \Big(\Lambda R(\omega) \Big)^k \| \mathbf{y} \|$$
 and $\mathbf{y} = \lim_{k \to \infty} \hat{\mathbf{y}}_k$ (8)

where k is a pre-specified hyperparameter and $\hat{\mathbf{y}}_k$ is the solution of Eq. (5) with $\epsilon = 0$.

Theorem 5 (Error Analysis, with label noise). Suppose that $\boldsymbol{\xi}$ is the random noise with flip rate ρ , and positive $\lambda_1 \leq \cdots \leq \lambda_n$ are eigenvalues of Laplacian \boldsymbol{L} , then for any function $\mathbf{y} \in PW_{\omega}(\mathcal{G})$,

$$\mathbb{E}\Big[\mathrm{MSE}(\mathbf{y}, \hat{\mathbf{y}})\Big] \le \frac{C_n^2}{n} \Big(\frac{\rho}{R(\lambda_1)(1 + R(\lambda_1)/\varphi)^2} + \frac{1}{4\varphi}\Big),\tag{9}$$

where $C_n^2 = R(\omega) \parallel \mathbf{y} \parallel^2$, φ is the regularization parameter and $\hat{\mathbf{y}}$ is defined in Eq. (7).

How to update the model when new data comes?

1. Data Modeling. We consider the problem in a dynamic state-space form:

$$x_{\text{new}} = x + F\Delta s + \eta$$
$$z_{\text{new}} = x_{\text{new}} + \nu$$

where \mathbf{z}_{new} is a measure of the new user state \mathbf{x}_{new} , \mathbf{x} is the user state of last time and Δs is the newly coming data (e.g., buying a hat in the example).

How \mathbf{z}_{new} looks like in GSIMC?

How to update the model when new data comes? (cont.)

2. Kalman filtering. We propose a prediction-correction update algorithm:

$$\widehat{x}_{new} = \overline{x}_{new} + K(z_{new} - \overline{x}_{new})$$

$$P_{new} = (I - K)\overline{P}_{new}(I - K)^T$$

$$K = \overline{P}_{new}(\overline{P}_{new} + \Sigma_{\nu})^{-1}$$

where $\overline{x}_{new} = \widehat{x} + F \Delta s$ and $\overline{P}_{new} = P + \Sigma_{\eta}$.

Table 2: **Hit-Rate** results against the baselines for inductive top-N ranking. Note that SGMC (Chen et al., 2021) is a special case of our method using the cut-off regularization, and MRFCF (Steck, 2019) is the full rank version of our method with (one-step) random walk regularization. The standard errors of the ranking metrics are **less than 0.005** for all the three datasets.

	Koubei, Density= 0.08%			Tmall, Density= 0.10%			Netflix, Density=1.41%		
Model	H@10	H@50	H@100	H@10	H@50	H@100	H@10	H@50	H@100
IDCF* (Wu et al., 2021)	0.14305	0.20335	0.24285	0.16100	0.27690	0.34573	0.08805	0.19788	0.29320
IDCF+GAT (Veličković et al., 2017)	0.19715	0.26440	0.30125	0.20033	0.32710	0.39037	0.08712	0.19387	0.27228
IDCF+GraphSAGE (Hamilton et al., 2017)	0.20600	0.27225	0.30540	0.19393	0.32733	0.39367	0.08580	0.19187	0.26972
IDCF+SGC (Wu et al., 2019)	0.20090	0.26230	0.30345	0.19213	0.32493	0.38927	0.08062	0.18080	0.26720
IDCF+ChebyNet (Defferrard et al., 2016)	0.20515	0.28100	0.32385	0.18163	0.32017	0.39417	0.08735	0.19335	0.27470
IDCF+ARMA (Bianchi et al., 2021)	0.20745	0.27750	0.31595	0.17833	0.31567	0.39140	0.08610	0.19128	0.27812
MRFCF (Steck, 2019)	0.17710	0.19300	0.19870	0.19123	0.28943	0.29260	$0.08738 \\ 0.09740$	0.19488	0.29048
SGMC (Chen et al., 2021)	0.23290	0.31655	0.34500	0.13560	0.31070	0.40790		0.22735	0.32193
GS-IMC (ours, Sec 3)	0.23460	0.31995	0.35065	0.13677	0.31027	0.40760	0.09725	0.22733	0.32225
BGS-IMC (ours, Sec 4)	0.24390	0.32545	0.35345	0.16733	0.34313	0.43690	0.09988	0.23390	0.33063

- 1. BGSIMC consistently outperforms GSIMC;
- 2. BGSIMC achieves the state-of-the-art performances;

