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Introduction

vMotivation

In recommender systems, for each user the goal is to provide a
list of items (e.g., products, movies etc.) based on her historical
records (e.g., click, favorite or buy). In the majority of time, the
system has the information of the users during the training.

train

testing

0
1

2

ItemUser

3

matrix R column s

1 0

1 0

0 1

0 1

0

0

1

0

inductive matrix completion

present at testing stage

0

0

1

1

0

0

0

-1

= +

truth y

noise 𝛏

vWhat if we need to serve new users?

This motivates the problem of the Inductive One-bit Matrix
Completion: given a set of observations Ω! consisting only of
ones but no zeros, the goal is to recover the underlying vector
𝒚 from Ω!.
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v Data Modelling

Let 𝒔 denote a user’s history (e.g., Charlie), where 𝒔" = 1 only when 𝑖 ∈ Ω!, then
𝒔 = 𝒚 + 𝝃 ,

where 𝝃 is the discrete noise that flips ones to zeros.



GSIMC：Closed Formed Solution for Inductive Learning
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(a) 1-Bit Matrix Completion (b) Graph Signal Samplinginductive matrix completion
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v A Graph Signal Sampling Perspective

1. Graph Definition. Let 𝑹 denotes an item-user rating matrix, then we can have an
item-item graph, for example,

𝑨 = 𝑹𝑫#$%𝑹&

2. Graph Signal Definition. Recall that 𝒔 signifies a user’s history, it can be regarded
as the values residing on the item vertices, namely a graph signal.



GSIMC：Closed Formed Solution for Inductive Learning (cont.)
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(a) 1-Bit Matrix Completion (b) Graph Signal Samplinginductive matrix completion
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v A Graph Signal Sampling Perspective (cont.)

3. Graph Signal Sampling Formulation. Let 𝑳 denote the graph Laplacian matrix, our goal is
to recover the ground-truth 𝒚 from the observations on a graph vertex subset, namely 𝒔.
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𝒇
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where K(∎) represents the kernel function on graph. This has a closed-formed solution:
!𝒚 = 𝑰 + 𝐾(𝑳)/𝜑 !"𝒔



GSIMC：Closed Formed Solution for Inductive Learning (cont.)

v A Graph Signal Sampling Perspective (cont.)



BGSIMC：Prediction-Correction Algorithm for Online Learning
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(a) Online Learning Scenario (b) BGS-IMC 

vHow to update the model when new data comes?

1. Data Modeling.We consider the problem in a dynamic state-space form:
𝒙'() = 𝒙 + 𝑭∆𝒔 + 𝜼
𝒛'() = 𝒙'() + 𝝂

where 𝒛'() is a measure of the new user state 𝒙'(), 𝒙 is the user state of last
time and ∆𝑠 is the newly coming data (e.g., buying a hat in the example). ∏0 ∏200 ∏400 ∏600 ∏800 ∏1000
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BGSIMC：Prediction-Correction Algorithm for Online Learning (cont.)
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(a) Online Learning Scenario (b) BGS-IMC 

vHow to update the model when new data comes? (cont.)

2. Kalman filtering.We propose a prediction-correction update algorithm:
E𝒙'() = F𝒙'() +𝑲(𝒛'() − F𝒙'())
𝑷'() = 𝑰 − 𝑲 F𝑷'() 𝑰 − 𝑲 &

𝑲 = F𝑷'() F𝑷'() + 𝚺* $%

where F𝒙'() = E𝒙 + 𝑭∆𝒔 and F𝑷'() = 𝑷 + 𝚺+ .
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Experiments: Accuracy Comparison

1. BGSIMC consistently outperforms GSIMC;
2. BGSIMC achieves the state-of-the-art performances;


