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Contrastive learning models are kernels

Common contrastive learning
losses can be decomposed into:

e a kernel-based loss function
e and alearned positive-definite

kernel

The minima of these decomposed
losses are the same!

(up to constant scaling)
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Contrastive learning models are kernels

This minimum is the positive-pair kernel:

P+ (a’la CL2)

Klar,02) = p(a1)p(az)

defined in terms of

e adistribution p(z) of latent examples
e adistribution p(a|z) of augmentations

with py (a1, a2) = ), p(a1|z)p(az|2)p(2)



Contrastive learning models are kernels

The positive pair kernel assigns high
similarity to likely positive pairs.
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Contrastive learning models can be
seen as parameterized approximations
of this kernel.
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Kernel principal components are eigenfunctions

Performing Kernel PCA yields a sequence of projection functions, which
are the eigenfunctions of a Markov chain over augmentations.
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These eigenfunctions are an optimal basis

Assumption: The downstream task involves learning an approximately
view-invariant function g : A — R:

Bp. (a1,a2) [(g(al) - 9(%))2] <e€



These eigenfunctions are an optimal basis

We prove that the eigenfunction representation minimizes worst-case L,
approximation error of linear predictors under this assumption.

Theorem 4.1. Let F, = {a — B'r(a) : B € R%} be the subspace of linear predictors
from representation r, and S. be the set of functions satisfying Assumption 1.1. Let r%(a) =
[f1(a), f2(a), ..., fi(a)] be the representation consisting of the d eigenfunctions of the positive
pair Markov chain with the largest eigenvalues. Then F.a maximizes the view invariance of the
least-invariant unit-norm predictor in F.a:

2
F,.a = argmin max E [Aa &l ] 5
: dirng(]-"):d geF, Egla)?]=1 T (9(a1) — §(a2)) S)

Simultaneously, J.a minimizes the (quadratic) approximation error for the worst-case target function
satisfying Assumption 1.1 for any fixed €:

: : RLY
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These eigenfunctions are an optimal basis

In fact, decomposing a function as a sum of weighted eigenfunctions
exactly determines its view-invariance!

Specifically, if g(a) = ). c;fi(a), then

By, (ar02) | (9(a1) — 9(a2))"] = S 2 - 20)¢2
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How to build eigenfunction representations with
contrastive learning

Strategy 1

e Train a contrastive learning model using cross entropy, logistic, or

spectral loss
e Use Kernel PCA to extract a representation from the learned kernel

Strategy 2:

e Directly estimate the principal eigenfunctions of the positive-pair
kernel



Do contrastive learning methods find eigenfunctions?

At high augmentation strengths, we can extract the same eigenfunction
representation across multiple model parameterizations, with the same
learned eigenvalues.
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Do contrastive learning methods find eigenfunctions?

But constrained kernel parameterizations and weak augmentations both
degrade approximation quality.
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Conclusion

e Our work highlights the surprising connections between contrastive
learning, view-invariance, Markov chains, and kernel methods

e Future directions:
o Building new self-supervised learning methods using the
positive-pair kernel
o Using the kernel perspective to understand the effects of
inductive biases



