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Contrastive learning models are kernels

Common contrastive learning 
losses can be decomposed into:

● a kernel-based loss function
● and a learned positive-definite 

kernel

The minima of these decomposed 
losses are the same!

(up to constant scaling)



Contrastive learning models are kernels

This minimum is the positive-pair kernel:

defined in terms of

● a distribution           of latent examples
● a distribution               of augmentations

with



Contrastive learning models are kernels

The positive pair kernel assigns high 
similarity to likely positive pairs. 

Contrastive learning models can be 
seen as parameterized approximations 
of this kernel.



Kernel principal components are eigenfunctions

Performing Kernel PCA yields a sequence of projection functions, which 
are the eigenfunctions of a Markov chain over augmentations.



These eigenfunctions are an optimal basis

Assumption: The downstream task involves learning an approximately 
view-invariant function                          :



These eigenfunctions are an optimal basis

We prove that the eigenfunction representation minimizes worst-case L2 
approximation error of linear predictors under this assumption.



These eigenfunctions are an optimal basis

In fact, decomposing a function as a sum of weighted eigenfunctions 
exactly determines its view-invariance!

Specifically, if                                            , then



How to build eigenfunction representations with 
contrastive learning

Strategy 1:

● Train a contrastive learning model using cross entropy, logistic, or 
spectral loss

● Use Kernel PCA to extract a representation from the learned kernel

Strategy 2:

● Directly estimate the principal eigenfunctions of the positive-pair 
kernel



Do contrastive learning methods find eigenfunctions?

At high augmentation strengths, we can extract the same eigenfunction 
representation across multiple model parameterizations, with the same 
learned eigenvalues.



Do contrastive learning methods find eigenfunctions?

But constrained kernel parameterizations and weak augmentations both 
degrade approximation quality.



Conclusion

● Our work highlights the surprising connections between contrastive 
learning, view-invariance, Markov chains, and kernel methods

● Future directions:
○ Building new self-supervised learning methods using the 

positive-pair kernel
○ Using the kernel perspective to understand the effects of 

inductive biases


