Learning Sparse Group Models Through Boolean Relaxation

Yijie Wang ${ }^{1 *}$, Yuan Zhou ${ }^{2 *}$, Xiaoqing Huang ${ }^{3}$, Kun Huang ${ }^{3}$, Jie Zhang ${ }^{4}$, Jianzhu Ma ${ }^{5}$

${ }^{1}$ Computer Science Department, Indiana University Bloomington
${ }^{2}$ Yau Mathematical Sciences Center and Department of Mathematical Sciences, Tsinghua University
${ }^{3}$ Department of Biostatistics \& Health Data Science, Indiana University
${ }^{4}$ Department of Medical and Molecular Genetics, Indiana University
${ }^{5}$ Institute for AI Industry Research, Tsinghua University
*Equal contribution

Sparsity Learning

- Unstructured Sparsity

००००००००००००००००००

- Structured Sparsity

000000000000000000
000000000000000000

Sparse Group Models

- Exact formulation using constraints

$$
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}
$$

Sparse Group Models

- Exact formulation using constraints

$$
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}
$$

Sparse Group Models

- Exact formulation using constraints

$$
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}
$$

Sparse Group Models

- Exact formulation using constraints

$$
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}
$$

$$
\begin{aligned}
& \text { Constraints } \\
& \Theta=\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{aligned}
$$

Sparse Group Models

- Exact formulation using constraints

$$
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}
$$

Constraints
$\Theta=\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}$
Constrain the \# of selected individual features to be less than k Constrain the \# of selected groups of features to be less than h

Related Works

- Formulation using regularization
- Structured sparsity-inducing norms (Friedman et al. (2010); Huang et al. (2011); Zhao et al. (2009); Simon et al. (2013); Tibshirani (1996); Bach et al. (2012); Kim \& Xing (2012); Liu \& Ye (2010); Rapaport et al. (2008); Zheng et al. (2018); Yuan et al. (2011); Jenatton et al. (2011))
- Submodular set-functions (Bach (2010))
- Convex relaxation of linear matrix inequalities and combinatorial penalties (El Halabi \& Cevher (2015); Halabi et al. (2018))
- Formulation using constraints

Pilanci et al. (2015) --- Our special case

Our work

$P^{*}=\min _{\|w\|_{0} \leq k}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}$

$$
\begin{array}{r}
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\} \\
\Theta=\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{array}
$$

Related Works

- Formulation using regularization
- structured sparsity-inducing norms (Friedman et al. (2010); Huang et al. (2011); Zhao et al. (2009); Simon et al. (2013); Tibshirani (1996); Bach et al. (2012); Kim \& Xing (2012); Liu \& Ye (2010); Rapaport et al. (2008); Zheng et al. (2018); Yuan et al. (2011); Jenatton et al. (2011))
- Submodular set-functions (Bach (2010))
- Convex relaxation of linear matrix inequalities and combinatorial penalties (El Halabi \& Cevher (2015); Halabi et al. (2018))
- Formulation using constraints

Pilanci et al. (2015) --- Our special case

Our work

$P^{*}=\min _{\|w\|_{0} \leq k}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\}$

$$
\begin{array}{r}
P^{*}=\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\} \\
\Theta=\left\{w \in \mathbb{R}^{d}\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} 1\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{array}
$$

Representation with Boolean constraints

- The original problem

$$
\begin{aligned}
P^{*} & =\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\} \\
\Theta & =\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{aligned}
$$

- Exact representation with Boolean constraints (Theorem 2.1)

$$
\begin{aligned}
& P^{*}=\min _{(u, z) \in \Gamma} \max _{v \in \mathbb{R}^{n}}\left\{-\frac{1}{2 \rho} v^{\top} X D(u) X^{\top} v-\sum_{i=1}^{n} f^{*}\left(v_{i} ; y_{i}\right)\right\} \\
& \Gamma=\left\{(u, z) \mid \sum_{i=1}^{d} u_{i} \leq k, \quad \sum_{j=1}^{b} z_{j} \leq h, \quad u_{i} \leq z_{j}, \quad \forall i \in g_{j}, \quad u \in\{0,1\}^{d}, \quad z \in\{0,1\}^{b}\right\}
\end{aligned}
$$

Representation with Boolean constraints

- The original problem

$$
\begin{aligned}
P^{*} & =\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\} \\
\Theta & =\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{aligned}
$$

- Exact representation with Boolean constraints (Theorem 2.1) Legendre-Fenchel conjugate of f

$$
\begin{aligned}
& P^{*}=\min _{(u, z) \in \Gamma} \max _{v \in \mathbb{R}^{n}}\left\{-\frac{1}{2 \rho} v^{\top} X D(u) X^{\top} v-\sum_{i=1}^{n} f^{*}\left(v_{i} ; y_{i}\right)\right\} \\
& \Gamma=\left\{(u, z) \mid \sum_{i=1}^{d} u_{i} \leq k, \quad \sum_{j=1}^{b} z_{j} \leq h, \quad u_{i} \leq z_{j}, \quad \forall i \in g_{j}, \quad u \in\{0,1\}^{d}, \quad z \in\{0,1\}^{b}\right\}
\end{aligned}
$$

Representation with Boolean constraints

- The original problem

$$
\begin{aligned}
P^{*} & =\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\} \\
\Theta & =\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{aligned}
$$

- Exact representation with Boolean constraints (Theorem 2.1)

$$
\begin{aligned}
& P^{*}=\min _{(u, z) \in \Gamma} \max _{v \in \mathbb{R}^{n}}\left\{-\frac{1}{2 \rho} v^{\top} X D(u) X^{\top} v-\sum_{i=1}^{n} f^{*}\left(v_{i} ; y_{i}\right)\right\} \\
& \Gamma=\left\{(u, z) \mid \sum_{i=1}^{d} u_{i} \leq k, \quad \sum_{j=1}^{b} z_{j} \leq h, \quad u_{i} \leq z_{j}, \quad \forall i \in g_{j}, \quad u \in\{0,1\}^{d} \quad z \in\{0,1\}^{b}\right\}
\end{aligned}
$$

u is a Boolean indicator for the supports of the individual features.

Representation with Boolean constraints

- The original problem

$$
\begin{aligned}
P^{*} & =\min _{w \in \Theta}\left\{F(w):=\sum_{i=1}^{n} f\left(w^{\top} x_{i} ; y_{i}\right)+\frac{1}{2} \rho\|w\|_{2}^{2}\right\} \\
\Theta & =\left\{w \in \mathbb{R}^{d} \mid\|w\|_{0} \leq k, \quad \sum_{j=1}^{b} \mathbf{1}\left[\left\|w_{g_{j}}\right\|_{0}>0\right] \leq h\right\}
\end{aligned}
$$

- Exact representation with Boolean constraints (Theorem 2.1)

$$
\begin{aligned}
& P^{*}=\min _{(u, z) \in \Gamma} \max _{v \in \mathbb{R}^{n}}\left\{-\frac{1}{2 \rho} v^{\top} X D(u) X^{\top} v-\sum_{i=1}^{n} f^{*}\left(v_{i} ; y_{i}\right)\right\} \\
& \Gamma=\left\{(u, z) \mid \sum_{i=1}^{d} u_{i} \leq k, \quad \sum_{j=1}^{b} z_{j} \leq h, \quad u_{i} \leq z_{j}, \quad \forall i \in g_{j}, \quad u \in\{0,1\}^{d}, \quad z \in\{0,1\}^{b}\right\}
\end{aligned}
$$

z is a Boolean indicator for the supports of the group features.

Boolean Relaxation

- Exact representation with Boolean constraints (Theorem 2.1)

$$
\begin{aligned}
& P^{*}=\min _{(u, z) \in \Gamma} \max _{v \in \mathbb{R}^{n}}\left\{-\frac{1}{2 \rho} v^{\top} X D(u) X^{\top} v-\sum_{i=1}^{n} f^{*}\left(v_{i} ; y_{i}\right)\right\} \\
& \Gamma=\left\{(u, z) \mid \sum_{i=1}^{d} u_{i} \leq k, \quad \sum_{j=1}^{b} z_{j} \leq h, \quad u_{i} \leq z_{j}, \quad \forall i \in g_{j}, \quad u \in\{0,1\}^{d}, \quad z \in\{0,1\}^{b}\right\}
\end{aligned}
$$

- Boolean relaxation

$$
\begin{aligned}
& P_{\mathrm{BR}}=\min _{(u, z) \in \Omega} \max _{v \in \mathbb{R}^{n}}\left\{-\frac{1}{2 \rho} v^{\top} X D(u) X^{\top} v-\sum_{i=1}^{n} f^{*}\left(v_{i} ; y_{i}\right)\right\} \\
& \Omega=\left\{(u, z) \mid \sum_{i=1}^{d} u_{i} \leq k, \quad \sum_{j=1}^{b} z_{j} \leq h, \quad u_{i} \leq z_{j}, \quad \forall i \in g_{j}, \quad u \in[0,1]^{d}, \quad z \in[0,1]^{b}\right\}
\end{aligned}
$$

The Tightness of the Boolean Relaxation

- In Theorem 2.2
- For general loss function f
- The sufficient and necessary condition when $P_{B R}$ achieves the exact solution of P^{*}
- In Corollary 2.3
- For square loss $f\left(w^{T} x_{i} ; y_{i}\right)=\frac{1}{2}\left(w^{T} x_{i}-y_{i}\right)^{2}$

$$
L_{\mathrm{BR}}=\min _{(u, z) \in \Omega}\left\{G(u):=y^{\top}\left(\frac{1}{\rho} X D(u) X^{\top}+I\right)^{-1} y\right\}
$$

- The sufficient and necessary condition when $L_{B R}$ achieves the exact solution of L^{*}

Theoretical Guarantees for Random Ensembles

- Apply Corollary 2.3 to two Random Ensembles

Theoretical Guarantees for Random Ensembles

- Apply Corollary 2.3 to two Random Ensembles

Theoretical Guarantees for Random Ensembles

- We prove our relaxed program
- can achieves the exactness with high probability.
- can achieve the nearly optimal sample complexity.
- Random Ensemble I

Theorem 3.1. Consider the random instance described above with parameters (n, d, k, γ, b, h) and let $y=X w+\epsilon$ be the observed response vector. Suppose that $\gamma \geq 1$. Let $\rho=n^{1 / 2+\delta}(\delta \in(0,1 / 2))$. With probability at least $\left(1-d \exp \left(-\Omega\left(n^{2 \delta} /\left(\gamma^{2} k\right)\right)\right)-d \exp \left(-\Omega\left(n^{1-2 \delta}\right)\right)\right.$, the relaxed program L_{BR} admits the optimal solution u^{*} and z^{*} where $u_{i}^{*}=\mathbf{1}\left[w_{i} \neq 0\right]$ and $z_{j}^{*}=\mathbf{1}[j \in\{1,2, \ldots, h\}]$.

- Random Ensemble II

Theorem 3.2. Let $X=\left[X_{1}, X_{2}, X_{3}\right]$ and $y=X w^{(1)}+\epsilon$ be a random instance described above with parameters $(n, d, k, \gamma, b, h, \zeta, w)$. Suppose there exists $\xi>0$ such that $\xi \leq\left|w_{i}\right| \leq \zeta^{1 / 4} \xi$ for all $i \in\{1,2, \ldots, k\}$. Also suppose that $\gamma \geq 1$. Let $\rho=n^{1 / 2+\delta}(\delta \in(0,1 / 2)$). For large enough constant ζ, with probability at least $\left(1-d \exp \left(-\Omega\left(n^{2 \delta} \xi^{2} / \gamma^{2}\right)\right)-d \exp \left(-\Omega\left(n^{1-2 \delta}\right)\right)\right)$, the relaxed program L_{BR} admits the optimal solution u^{*} and z^{*} where $u_{i}^{*}=1\left[w_{i}^{(1)} \neq 0\right]$ and $z_{g}^{*}=1\left[\exists i \in g: w_{i}^{(1)} \neq 0\right]$. Here, we use g to denote both the index of a group and the set of the features included in the group.

Experimental Results

- Random Ensemble I $L_{\mathrm{BR}}=\min _{(u, z) \in \Omega}\left\{G(u):=y^{\top}\left(\frac{1}{\rho} X D(u) X^{\top}+I\right)^{-1} y\right\}$

Experimental Results

- Random Ensemble II $\quad L_{\mathrm{BR}}=\min _{(u, z) \in \Omega}\left\{G(u):=y^{\top}\left(\frac{1}{\rho} X D(u) X^{\top}+I\right)^{-1} y\right\}$

Experimental Results

- Cancer drug response prediction

- Drug: IMATNIB
- Samples: IMATNIB response of 1,225 tumor samples
- Features: 2,369 genes

Table 1: Result comparison for IMATNIB.

- Pathways: 207 gene groups

Method	k (s.d.)	h (s.d.)	Out-of-sample MSE $\pm 95 \%$ CI
Proposed	46	7	32.6 ± 2.2
SGL-Overlap	$92(5.4)$	$19(0.5)$	46.9 ± 3.7
ENet	$60(8.2)$	$18(2.3)$	39.6 ± 4.2
SGCover	$321(10.5)$	$13(1.7)$	55.4 ± 6.9

Table S3: Pathways and genes identified by the proposed methods for IMATNIB.

Pathway	Genes	Reference
RHO GTPases Activate WASPs and WAVEs	ARPC1B WASF1 ARPC5 WASL CYFIP1 ACTG1 ACTR3	Gu et al (2008); Huang et al (2008); Chen et a
Regulation of PTEN gene transcription	LAMTOR3 LAMTOR4 SNAI1 RPTOR RRAGA RRAGB MBD3 RRAGD PHC3 GATAD2A RCOR1 MECOM CBX8 LAMTOR2	Nishioka et al. (201, ; Peng et al. (2010); Huan
Signaling by PDGF	PDGFC COL4A3 COL6A2 COL6A3 COL9A3	Malavaki et al. (2013); Li et al. (2006); Heldin
Retinoid metabolism and transport	CLPS LRP8 APOC3 SDC4 LPL LRP10 LRP12 APOA2	Hoang et al. (2010)
TCF transactivating complex	RBBP5 KAT5 PYGO1 PYGO2 BCL9	Zhang et al. (202]); Coluccia et al (200); Cos
Deactivation of the beta-catenin transactivating complex	RBBP5 SOX3 SRY PYGO1 PYGO2 CBY1 BCL9	Zhou et al. (200.); Leo et al. (2013)
RAS processing	ZDHHC9 GOLGA7 BCL2L1 ABHD17B	Chung et al. (2006); Braun \& Shannon (2008)

Experimental Results

- Cancer drug response prediction

- Drug: IMATNIB
- Samples: IMATNIB response of 1,225 tumor samples
- Features: 2,369 genes

Table 1: Result comparison for IMATNIB.

- Pathways: 207 gene groups

Method	$k($ s.d. $)$	h (s.d.)	Out-of-sample MSE $\pm 95 \% \mathrm{CI}$
Proposed	46	7	32.6 ± 2.2
SGL-Overlap	$92(5.4)$	$19(0.5)$	46.9 ± 3.7
ENet	$60(8.2)$	$18(2.3)$	39.6 ± 4.2
SGCover	$321(10.5)$	$13(1.7)$	55.4 ± 6.9

Table S3: Pathways and genes identified by the proposed methods for IMATNIB.

Pathway	Genes	Reference
RHO GTPases Activate WASPs and WAVEs	ARPC1B WASF1 ARPC5 WASL CYFIP1 ACTG1 ACTR3	Gu et al. (2009); Huang et al. (2008); Chen et a
Regulation of PTEN gene transcription	LAMTOR3 LAMTOR4 SNAI1 RPTOR RRAGA RRAGB MBD3 RRAGD PHC3 GATAD2A RCOR1 MECOM CBX8 LAMTOR2	Nishioka et al. (201, ; Peng et al. (2010); Huan
Signaling by PDGF	PDGFC COL4A3 COL6A2 COL6A3 COL9A3	Malavaki et al. (2013); Li et al. (2006); Heldin
Retinoid metabolism and transport	CLPS LRP8 APOC3 SDC4 LPL LRP10 LRP12 APOA2	Hoang et al. (2010)
TCF transactivating complex	RBBP5 KAT5 PYGO1 PYGO2 BCL9	Zhang et al. (202]); Coluccia et al (200); Cos
Deactivation of the beta-catenin transactivating complex	RBBP5 SOX3 SRY PYGO1 PYGO2 CBY1 BCL9	Zhou et al (200.); Leo et al. (201.)
RAS processing	ZDHHC9 GOLGA7 BCL2L1 ABHD17B	Chung et al. (2006); Braun \& Shannon (2008)

Summary

- Novel framework for sparse group models.
- Theoretically for two random ensembles,
- achieve the exactness with high probability.
- achieve nearly optimal sample complexity.
- Empirically,
- outperforms the state-of-the-art methods when the sample size is small.

Thank you!!!

Rounding Scheme

- Recover Boolean solution $\left(u \in\{0,1\}^{d}, z \in\{0,1\}^{b}\right)$ from $\left(\bar{u} \in[0,1]^{d}, \bar{z} \in[0,1]^{b}\right)$
- Rounding Algorithm
- Generate feasible Boolean solution (\tilde{u}, \tilde{z})
- For group $j, \quad \operatorname{Pr}\left[z_{j}=1\right]=\bar{z}_{j} \quad$ and $\quad \operatorname{Pr}\left[z_{j}=0\right]=1-\bar{z}_{j}$.
- For feature i in group j,

$$
\operatorname{Pr}\left[u_{i}=1\right]=\frac{\bar{u}_{i}}{\bar{z}_{j}} \quad \text { and } \quad \operatorname{Pr}\left[u_{i}=0\right]=1-\frac{\bar{u}_{i}}{\bar{z}_{j}}
$$

- Find the best solution

$$
w:=\arg \min _{w \in \mathbb{R}^{d}} F(D(\tilde{u}) w)
$$

