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Sparsity Learning
●Unstructured Sparsity

● Structured Sparsity
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Sparse Group Models
●Exact formulation using constraints
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Loss function
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Regularization
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Constraints



Sparse Group Models
●Exact formulation using constraints
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Constraints

Constrain the # of selected individual features to be less than 𝑘
Constrain the # of selected groups of features to be less than ℎ



Related Works
● Formulation using regularization

○ Structured sparsity-inducing norms (Friedman et al. (2010); Huang et al. (2011); Zhao et al. (2009); Simon et al. 
(2013); Tibshirani (1996); Bach et al. (2012); Kim & Xing (2012); Liu & Ye (2010); Rapaport et al. (2008); Zheng et al. 
(2018); Yuan et al. (2011); Jenatton et al. (2011))

○ Submodular set-functions (Bach (2010))
○ Convex relaxation of linear matrix inequalities and combinatorial penalties (El Halabi & Cevher (2015); Halabi et 

al. (2018) )

● Formulation using constraints
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● Pilanci et al. (2015) --- Our special case ●Our work
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Representation with Boolean constraints
●The original problem

●Exact representation with Boolean constraints (Theorem 2.1)
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Legendre-Fenchel conjugate of 𝑓



Representation with Boolean constraints
●The original problem

●Exact representation with Boolean constraints (Theorem 2.1)

12
𝑢 is a Boolean indicator for the supports of the individual features. 



Representation with Boolean constraints
●The original problem

●Exact representation with Boolean constraints (Theorem 2.1)
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𝑧 is a Boolean indicator for the supports of the group features.



Boolean Relaxation
●Exact representation with Boolean constraints (Theorem 2.1)

●Boolean relaxation
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The Tightness of the Boolean Relaxation
● In Theorem 2.2

○ For general loss function 𝑓
○ The sufficient and necessary condition when 𝑃!" achieves the exact solution of 𝑃∗

● In Corollary 2.3
○ For square loss

○ The sufficient and necessary condition when 𝐿!" achieves the exact solution of 𝐿∗
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Theoretical Guarantees for Random Ensembles
●Apply Corollary 2.3 to two Random Ensembles
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●Random Ensemble I (Simon et al. (2013); Friedman et al. (2010)) ●Random Ensemble II
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●Random Ensemble I (Simon et al. (2013); Friedman et al. (2010)) ●Random Ensemble II



Theoretical Guarantees for Random Ensembles
●We prove our relaxed program 

○ can achieves the exactness with high probability.
○ can achieve the nearly optimal sample complexity.

●Random Ensemble I

●Random Ensemble II
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Experimental Results
●Random Ensemble I
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Experimental Results
●Random Ensemble II
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Experimental Results
●Cancer drug response prediction

○ Drug: IMATNIB
○ Samples: IMATNIB response of 1,225 tumor samples 
○ Features: 2,369 genes
○ Pathways: 207 gene groups
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Summary
●Novel framework for sparse group models.

●Theoretically for two random ensembles,
○ achieve the exactness with high probability.
○ achieve nearly optimal sample complexity.

●Empirically, 
○ outperforms the state-of-the-art methods when the sample size is small.
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Rounding Scheme
●Recover Boolean solution (𝑢 ∈ 0,1 !, 𝑧 ∈ 0,1 ") from ()𝑢 ∈ 0,1 !, ̅𝑧 ∈ 0,1 ") 

●Rounding Algorithm
○ Generate feasible Boolean solution (%𝑢, �̃�)

■ For group 𝑗, 

■ For feature 𝑖 in group 𝑗, 

○ Find the best solution 
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