

ETH zürich

MeshDiffusion: Score-based Generative 3D Mesh Modeling

Zhen Liu, Yao Feng, Michael J. Black, Derek Nowrouzezahrai, Liam Paull, Weiyang Liu

Why 3D Generation?

Creating realistic but diverse set of 3D assets is hard

- Games & movies
- Digital avatar design
- Synthetic environments for robotics

Most 3D assets are built with <u>meshes</u>

Driving an 80 km. Route Generated from HD Map Data

3D Meshes

Discretized surfaces with triangles / polygons

- + Easy manipulation (geometry, light, motion)
- + Fast and reliable physics-based rendering

1st citizen in modern graphics pipelines

Goal: to build a diffusion model to directly generate 3D meshes

Source: Stanford bunny, mesh figure from https://arxiv.org/abs/1904.05537

Challenges with Meshes

- No predefined topology
- Varying numbers of vertices and faces

Source: ShapeNet Dataset, https://shapenet.org/

Capture Topology with SDFs

Signed distance field (SDF):

- Scale = Distance to the nearest surface
- Sign = Inside/outside the object

Surface = Zero levelset

Source: https://arxiv.org/abs/2202.08345

SDFs to Meshes

Marching cubes / Marching tetrahedra: 1-to-1 mapping from SDFs to meshes

Source: https://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1704.pdf, https://nv-tlabs.github.io/DMTet/

Parametrizing Meshes

Deep Marching Tetrahedra (DMTet): Parametrize meshes with deformable tetrahedral grids

- Deformation = details without higher resolution
- Deformed tetrahedra are still tetrahedra

Fitting Deformed Grid of SDFs

Model Objective

For simplicity, follow a two-stage process:

Create a DMTet dataset

Source: Adapted from https://nv-tlabs.github.io/nvdiffrec/

Recap: Diffusion Model

Key idea: model the generation process as a denoising process

$$\underbrace{\mathbf{x}_{T}}_{} \longrightarrow \cdots \longrightarrow \underbrace{\mathbf{x}_{t}}_{} \underbrace{\stackrel{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{\underset{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{}} \underbrace{\mathbf{x}_{t-1}}_{} \longrightarrow \cdots \longrightarrow \underbrace{\mathbf{x}_{0}}_{} \underbrace{}$$

Learning objective: denoising autoencoder

$$\mathbb{E}_{t,\mathbf{x}_{0},\boldsymbol{\epsilon}} \left[\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \right\|^{2} \right]$$
Noisy input

Noise prediction U-Net

Source: Denoising Diffusion Probabilistic Models, https://arxiv.org/abs/2006.11239

Convolutional U-Net on DMTet

Translational invariance in DMTet \rightarrow use convolution

- Reimplementing convolutions for tetrahedral grids
- Augment tetrahedral grids to cubic grids \rightarrow 3D CNN \checkmark

Offset coordinates + SDF value

A naïve implementation results in uneven or broken generated surfaces

Create v_p if s_a and s_b (the SDFs of v_a and v_b) have different signs

$$v_p = \frac{v_a |s_b| + v_b |s_a|}{|s_a| + |s_b|}$$

Create v_p if s_a and s_b (the SDFs of v_a and v_b) have different signs

$$v_p = \frac{v_a |s_b| + v_b |s_a|}{|s_a| + |s_b|}$$

Suppose $s_b < 0 < s_a$. With an identical noise on both s_a and s_b :

$$v_{p,\text{noisy}} - v_p = \frac{\epsilon}{|s_a| + |s_b|} (v_b - v_a) \qquad (0 < \epsilon < |s_b|)$$
Unknown Scale
$$\rightarrow \text{Varies at different locations in different data points}$$

Source: Figure adapted from https://nv-tlabs.github.io/DMTet/assets/dmtet.pdf

Similarly, consider:

- A vertex N with a negative SDF value S_N close to zero, but
- All surrounding vertices with large positive SDF values

A small perturbation on S_N

 \rightarrow a topological change but negligible L2 loss

Lower denoising loss on SDFs \neq Lower prediction loss on mesh vertex positions \neq Good topological prediction

Solution: Normalize SDF values on all tetrahedral vertices to ± 1 by rounding

• Finetune offsets in the DMTet dataset after normalization

Unconditional Generation

MeshDiffusion 1) produces sharper edges and 2) is less prone to catastrophic failures

Quantitative Results

Hallucinated Samples

Not reasonable in the sense of affordance but geometry

Single-view Conditional Generation

Single-view Conditional Generation

Single-view Conditional Generation

Interpolation

Using DDIM inference, we can treat the initial noises as latent codes

Text-to-Texture

May use SOTA methods for text-to-texture synthesis

A sofa with an anime character

A blue and purple leather swivel chair

Thank you!

Project Page

GitHub

Project page:

https://meshdiffusion.github.io

Github repo:

https://github.com/lzzcd001/MeshDiffusion/

Check our poster @ MH1-2-3-4 #161