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Pre-training changes the ranking of 
federated optimization algorithms.

If one sorts federated optimization methods based on their 
performance when starting from a random initialization, the order is 
substantially different from when using a pre-trained initialization.
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Pre-training closes the accuracy gap 
between non-IID and IID.

The gap between models trained on IID data and models trained on 
non-IID data is significantly smaller when starting with pre-trained 
weights.

The average accuracy on 3 different seeds for FEDADAM trained on IID and non-IID data. For CIFAR-10 Non-IID, 
we generate 100 non-IID clients using a Dirichlet(0.1). For other three datasets, we use the natural non-IID client 

partitions.

Pre-training reduces the negative effects of 
client drift. 

We observe that  when training from a pre-trained model, increasing 
the number of local updates does not degrade the final accuracy, in 
contrast to training from a random model.

Pre-training reduces the impact of system 
heterogeneity.
The accuracy gap between algorithms is more pronounced in the 
random initialization setting, whereas in the pre-trained setting, all 
algorithms converge to more similar accuracies. 

The top eigenvalue of the Hessian matrix for each dataset between the pre-trained and random initialized models

Understanding why pre-training helps 
federated optimization.

Pre-training helps align client updates.

Training and gradient statistics of a Resnet18 on CIFAR-10 with Dirichlet distribution with parameter 0.1. Top row: 
Train loss of global model; train accuracy of global model; evaluation accuracy of global model; evaluation loss of 

global model. Bottom row: Gradient diversity of client updates; cosine similarity between client updates; L2 
distance of server weights from their final values at the end of training.

We examine the  largest eigenvalue of the Hessian matrix (i.e., local 
Lipshitz constant) at the beginning of training, a larger value of which 
suggests a harder-to-optimizer loss surface. 

Recommendations
1. When evaluating FL algorithms, researchers should 

experiment with both pre-trained and random weights. 
2. Using adaptive server optimizers such as FEDADAM 

together with SGD at the client is a simple and competitive 
approach to start from a pre-trained model.

3. When focusing on heterogeneity, it may be worth 
considering whether or not proxy data is available for 
pre-training to motivate the application considered


