
Where to Begin? On the Impact of Pre-Training
and Initialization in Federated Learning

QR CODE

Take a photo to learn more:

John Nguyen, Jianyu Wang, Kshitiz Malik,
Maziar Sanjabi, Michael Rabbat

Pre-training changes the ranking of
federated optimization algorithms.

If one sorts federated optimization methods based on their
performance when starting from a random initialization, the order is
substantially different from when using a pre-trained initialization.

• Bulleted list item
• Bulleted list item
• Bulleted list item
• Bulleted list item
• Bulleted list item
• Bulleted list item

Pre-training closes the accuracy gap
between non-IID and IID.

The gap between models trained on IID data and models trained on
non-IID data is significantly smaller when starting with pre-trained
weights.

The average accuracy on 3 different seeds for FEDADAM trained on IID and non-IID data. For CIFAR-10 Non-IID,
we generate 100 non-IID clients using a Dirichlet(0.1). For other three datasets, we use the natural non-IID client

partitions.

Pre-training reduces the negative effects of
client drift.

We observe that when training from a pre-trained model, increasing
the number of local updates does not degrade the final accuracy, in
contrast to training from a random model.

Pre-training reduces the impact of system
heterogeneity.
The accuracy gap between algorithms is more pronounced in the
random initialization setting, whereas in the pre-trained setting, all
algorithms converge to more similar accuracies.

The top eigenvalue of the Hessian matrix for each dataset between the pre-trained and random initialized models

Understanding why pre-training helps
federated optimization.

Pre-training helps align client updates.

Training and gradient statistics of a Resnet18 on CIFAR-10 with Dirichlet distribution with parameter 0.1. Top row:
Train loss of global model; train accuracy of global model; evaluation accuracy of global model; evaluation loss of

global model. Bottom row: Gradient diversity of client updates; cosine similarity between client updates; L2
distance of server weights from their final values at the end of training.

We examine the largest eigenvalue of the Hessian matrix (i.e., local
Lipshitz constant) at the beginning of training, a larger value of which
suggests a harder-to-optimizer loss surface.

Recommendations
1. When evaluating FL algorithms, researchers should

experiment with both pre-trained and random weights.
2. Using adaptive server optimizers such as FEDADAM

together with SGD at the client is a simple and competitive
approach to start from a pre-trained model.

3. When focusing on heterogeneity, it may be worth
considering whether or not proxy data is available for
pre-training to motivate the application considered

