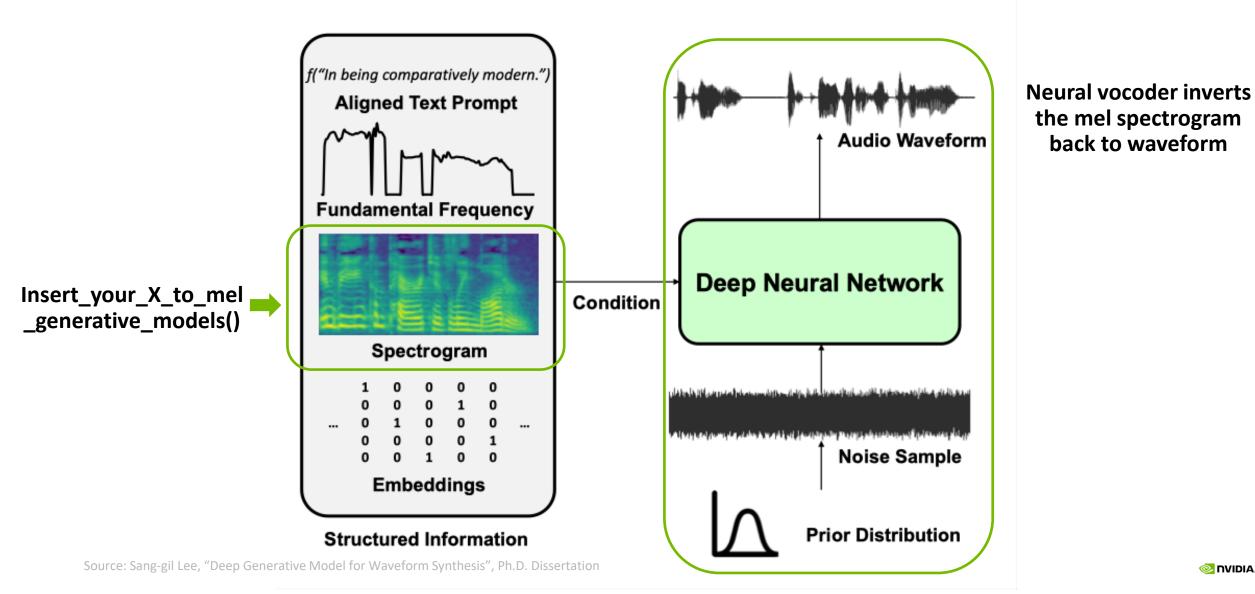


BigVGAN: A Universal Neural Vocoder with Large-Scale Training

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon

Neural Vocoder: Conditional Waveform Synthesizer

A cornerstone module of generative AI for speech & audio

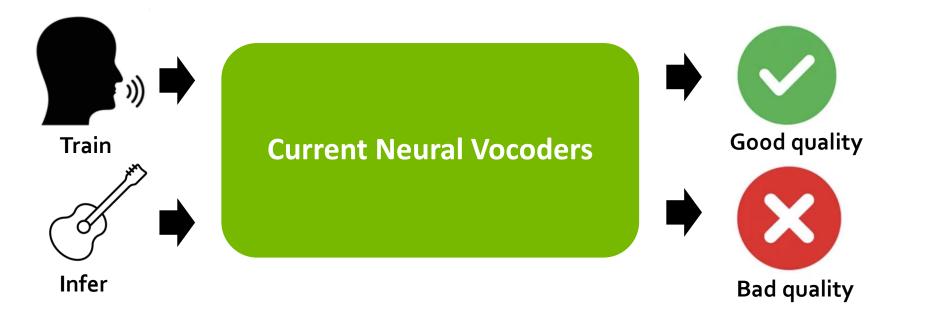

💿 NVIDIA

- Low resolution
- Larger # of channels
- Easier to model with generative models

Source: Sang-gil Lee, "Deep Generative Model for Waveform Synthesis", Ph.D. Dissertation

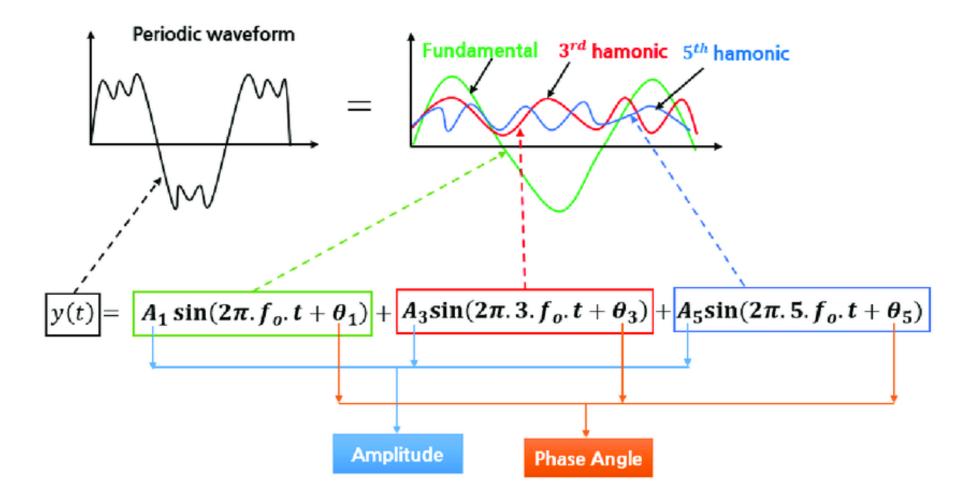
Neural Vocoder Maps Acoustic Feature to Waveform

With mel spectrogram (with unknown phase) as a standard choice



Universal Vocoder Should Generalize to Every Sounds of the World

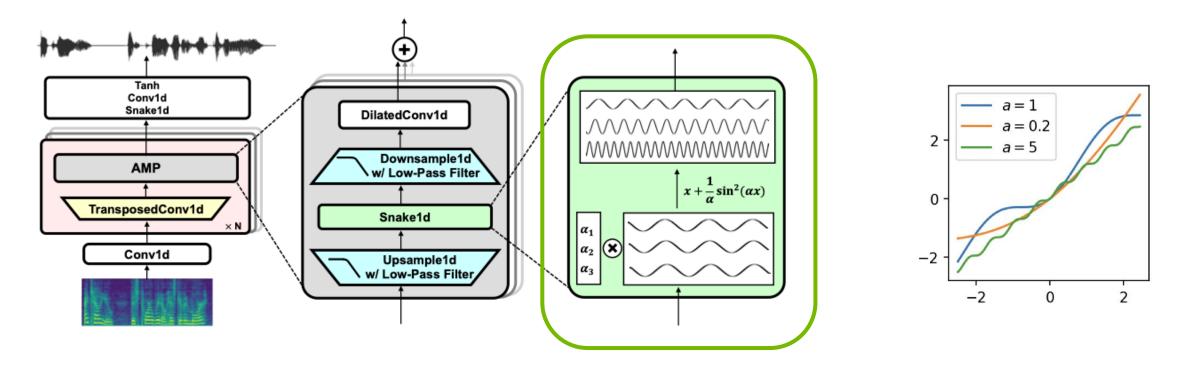
Current neural vocoders are not robust enough to unseen conditions


An ideal, drop-in universal vocoder should be robust to:

- Unseen speakers & languages
- Unseen recording environments
- Non-speech vocalizations
- ... and any types of speech & audio **unseen during training**, without any retraining or finetuning!

Audio Waveform Is Highly Periodic

Waveform can be expanded to a sum of multiple sine waves (Fourier series)

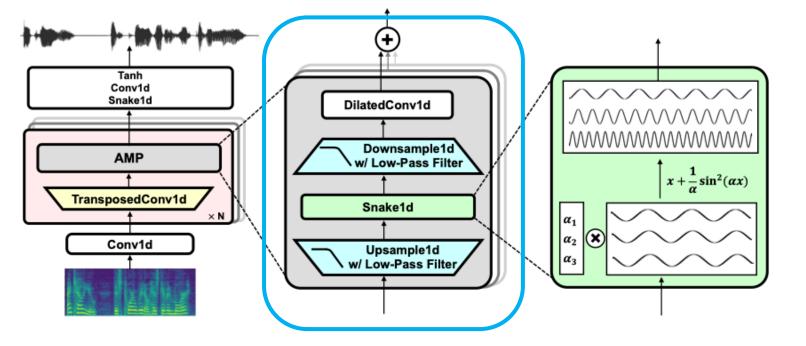


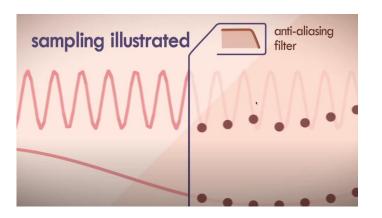
BigVGAN: Anti-Aliased Multi-Periodicity Composition (AMP)

AMP applies Snake activation function towards inductive bias of periodicity

 $x + \frac{1}{\alpha}sin^2(\alpha x)$: periodic activation with channel-wise trainable frequency α

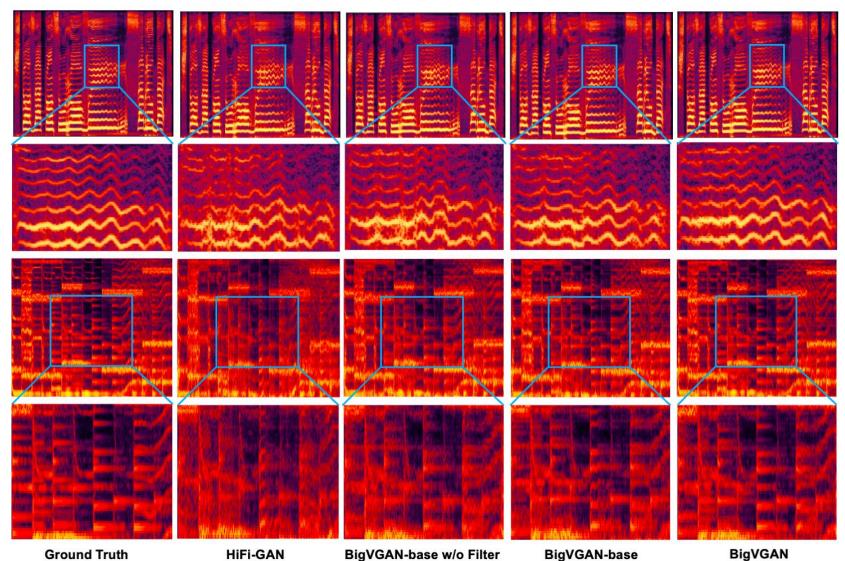
- monotonic & easy to optimize compared to sin(x) which contains many local minima
- → Provides better inductive bias for waveform & stronger out-of-distribution generalization


BigVGAN: Anti-Aliased Multi-Periodicity Composition (AMP)


AMP applies anti-aliasing filters to supress high-frequency artifacts

Nonlinearities can add arbitrarily high frequency features that cannot be represented in the discrete grid

- Suppress the artifacts inspired by StyleGAN3 (Karras et al., NeurIPS 2021)
- Upsample by $2x \rightarrow$ apply nonlinearity \rightarrow downsample by 2x, along with low-pass filters


→ Feature aliasing of neural vocoders can be suppressed

Visualization

BigVGAN captures high-frequency harmonic compnents significantly better than baselines

Ground Truth

HiFi-GAN

BigVGAN-base w/o Filter

Experimental Results: In-Domain

BigVGAN outperforms previous SOTAs by large magin: both for objective & subjective metrics

BigVGAN is the largest & high-speed GAN vocoder with **112M** parameters

Table 1: Model footprint and synthesis speed for 24 kHz audio measured on an NVIDIA RTX 8000 GPU.

Method	WaveGlow	WaveFlow	HiFi-GAN (V1)	BigVGAN-base	w/o filter	BigVGAN
Params (M)	99.43	22.58	14.01	14.01	14.01	112.4
Syn. speed	31.87×	19.59×	93.75×	70.18×	75.83×	44.72×

LibriTTS Results: various objective metrics & (similiarity) mean opinion scores ((S)MOS)

LibriTTS	$ $ M-STFT(\downarrow)	PESQ(↑)	$MCD(\downarrow)$	Periodicity(\downarrow)	V/UV F1(↑)	MOS(†)	SMOS(†)
Ground Truth	-	-	-	-	-	4.40±0.06	4.44±0.06
SC-WaveRNN	2.2358	1.701	1.8854	0.3044	0.8144	3.20±0.11	3.29±0.10
WaveGlow-256	1.3099	3.138	2.3591	0.1485	0.9378	$3.84{\pm}0.10$	$3.87 {\pm} 0.10$
WaveFlow-128	1.1120	3.027	1.2455	0.1416	0.9410	3.85 ± 0.10	$3.89 {\pm} 0.10$
HiFi-GAN (V1)	1.0017	2.947	0.6603	0.1565	0.9300	4.08±0.09	$4.15 {\pm} 0.09$
BigVGAN-base BigVGAN	0.8788 0.7997	3.519 4.027	0.4564 0.3745	0.1287 0.1018	0.9459 0.9598	4.10±0.09 4.11±0.09	4.20±0.08 4.26±0.08

Experimental Results: Out-of-Distribution

BigVGAN is substantially better for generalization to out-of-distribution data

Multi-lingual datasets: significantly better SMOS under unseen & noisy recording environments

Recording env.	Clean	Noisy (sim)	Noisy (real)
Language	Jv,Km,Ne,Su	Es,Fr,It,Pt	Ko
Ground Truth	4.58±0.05	$4.36 {\pm} 0.05$	$4.56 {\pm} 0.05$
UnivNet-c32†	$\begin{array}{c c} 4.35 \pm 0.07 \\ 4.39 \pm 0.07 \\ 4.38 \pm 0.07 \\ \textbf{4.41} \pm \textbf{0.07} \end{array}$	3.95 ± 0.09	4.18 ± 0.08
HiFi-GAN (V1)		4.13 ± 0.08	4.21 ± 0.08
BigVGAN-base		4.21 ± 0.07	4.36 ± 0.07
BigVGAN		4.26 ± 0.07	4.38 ± 0.07

Out-of-distriution music audio (MUSDB18-HQ): substantial SMOS improvements on challenging data in zero-shot

Method	Vocal	Drums	Bass	Others	Mixture	Average
Ground Truth	$4.58{\pm}0.05$	$4.57{\pm}0.05$	$4.52{\pm}0.05$	$4.61 {\pm} 0.05$	$4.56{\pm}0.05$	4.57±0.02
UnivNet-c32† HiFi-GAN (V1)	$4.22{\pm}0.09$ $4.26{\pm}0.08$	4.23±0.09 4.37±0.08	3.90±0.11 3.95±0.11	3.80 ± 0.13 3.92 ± 0.12	3.80 ± 0.12 3.91 ± 0.11	3.99 ± 0.05 4.08 ± 0.05
BigVGAN-base w/o filter w/o filter & snake	4.36 ± 0.08 4.30 ± 0.08 4.31 ± 0.08	4.39 ± 0.07 4.32 ± 0.07 4.32 ± 0.07	$\begin{array}{c} \textbf{4.00} \pm \textbf{0.11} \\ 3.95 \pm 0.11 \\ 3.94 \pm 0.11 \end{array}$	4.14 ± 0.09 4.05 ± 0.10 4.01 ± 0.11	4.11 ± 0.10 4.11 ± 0.10 4.02 ± 0.10	$\begin{array}{c} 4.20 \pm 0.04 \\ 4.15 \pm 0.04 \\ 4.12 \pm 0.04 \end{array}$
BigVGAN	4.37±0.08	4.41±0.07	4.00±0.10	4.25±0.09	4.26±0.08	4.26±0.04

Summary: BigVGAN Explores the Limits of Universal Neural Vocoding

Code & Model: <u>https://github.com/NVIDIA/BigVGAN</u>

Demo: <u>https://bigvgan-demo.github.io</u>

arXiv: https://arxiv.org/abs/2206.04658