
Arnob Ghosh,
The Ohio State University, Dept. of Electrical and Computer Engineering,
Research Scientist at the NSF AI-Edge Institute

Achieving sub-linear regret in infinite horizon average reward
constrained MDP with Linear Function Approximation

 
(Joint work with

Xingyu Zhou, Wayne State University, 
Ness Shroff, The Ohio State University)

1

Constrained MDP

2

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

2

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)

2

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

2

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

• Theoretical results: only for tabular case and model-based [Chen et al.’22]

2

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

• Theoretical results: only for tabular case and model-based [Chen et al.’22]

2

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

• Theoretical results: only for tabular case and model-based [Chen et al.’22]

2

Can we achieve sub-linear regret and constraint violation for infinite-horizon linear CMDP using model-
free RL?

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

• Theoretical results: only for tabular case and model-based [Chen et al.’22]

2

Can we achieve sub-linear regret and constraint violation for infinite-horizon linear CMDP using model-
free RL?

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

• Theoretical results: only for tabular case and model-based [Chen et al.’22]

2

Can we achieve sub-linear regret and constraint violation for infinite-horizon linear CMDP using model-
free RL?

Constrained MDP
• In many practical applications, agent needs to satisfy constraints (e.g., safe navigation by robots, takes decision

under limited resource).

• Provably-efficient algorithm for episodic case in linear CMDP [Ghosh et al’22] (reward and utility)r g

• In many applications, agents need to take action continuously (e.g., safe controller, routing decisions): Infinite-horizon
model is preferable.

Average reward:  

Average utility: ,

Jπ
r (x) = lim

T−>∞

1
T

𝔼π (
T

∑
t=1

r(xt, at) |x1 = x)
Jπ

g(x) = lim
T−>∞

1
T

𝔼π (∑
t

g(xt, at) |x1 = x)
maximize Jπ

r (x) subject to Jπ
g(x) ≥ b

• Theoretical results: only for tabular case and model-based [Chen et al.’22]

2

Can we achieve sub-linear regret and constraint violation for infinite-horizon linear CMDP using model-
free RL?

Linear in feature ϕ(x, a)

Algorithm

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

• Solution: Relax the constraint to Hb Hb − κ

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

• Solution: Relax the constraint to Hb Hb − κ

• Both Regret and violation bound + (T/H)O(1) �̃�(d3H2T)

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

• Solution: Relax the constraint to Hb Hb − κ

• Both Regret and violation bound + (T/H)O(1) �̃�(d3H2T)

3

Too Small H —> episodic case would
not resemble infinite-horizon

Too Large H —> no effect of breaking
in episodes

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

• Solution: Relax the constraint to Hb Hb − κ

• Both Regret and violation bound + (T/H)O(1) �̃�(d3H2T)

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

• Solution: Relax the constraint to Hb Hb − κ

• Both Regret and violation bound + (T/H)O(1) �̃�(d3H2T)

• H = O(d−3/4T1/4)

3

Algorithm
• Basic Assumption: , (satisfied by weakly communicating MDP for tabular case)J*r (x) = J*r J*g (x) = J*g ∀x

• Seek to reduce , .Regret(T) = ∑
t

(J*r − r(xt, at)) Violation(T) = ∑
t

(b − g(xt, at))

• First try: Open the loop

• Divide in episodes (episode length:) —> employ algorithm for episodic case from Ghosh
et al.’22.

T K H = T/K

• Challenge: The optimal solution of the original problem must be feasible to the episodic case.

• Solution: Relax the constraint to Hb Hb − κ

• Both Regret and violation bound + (T/H)O(1) �̃�(d3H2T)

• H = O(d−3/4T1/4)

• Final result: with high prob. Regret and violation bound �̃�(d3/4T3/4)

3

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)
Bonus term

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)
Bonus term

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)
Bonus term

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

• Is it done? Not yet: need smoothness in policy since one needs to show uniform concentration bound for
both reward and utility for model-free algorithms;

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

• Is it done? Not yet: need smoothness in policy since one needs to show uniform concentration bound for
both reward and utility for model-free algorithms;

• : class of smooth policies (such as soft-max)π ∈ Π

4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 2
• Can we do it better?

• Fit the Q to Bellman equation (solve regularized least square) for ⋄ = r, g

∑ (⋄ (xk, ak) − J*⋄ + ϕ(x, a)Tw⋄ − v⋄(xk+1)) + λ | |wr | |2
2

• Challenge: Do not know , ; depends on , .Jr Jg v⋄ π w⋄

• Naive oracle-based algorithm with optimism (computationally inefficient) provides the parameter w⋄

• Is it done? Not yet: need smoothness in policy since one needs to show uniform concentration bound for
both reward and utility for model-free algorithms;

• : class of smooth policies (such as soft-max)π ∈ Π

• Regret and violation bound: first such result for Linear CMDP.�̃�(d3T)
4

max
π,wr,wg,Jr,Jg,br,bg

Jr

subject to | |w⋄ | | ≤ C, | |b⋄,k | |Λ−1
t

≤ β, Jg ≥ b

w⋄ = Λ−1
k (

k−1

∑
t=1

⋄ (xk, ak) − J⋄ + v⋄(xt+1) + b⋄,k)

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

• at epoch k.πk(a |x) ∝ πk−1 exp(ϕ(x, a)T(wr,k + Ykwk
g))

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

• at epoch k.πk(a |x) ∝ πk−1 exp(ϕ(x, a)T(wr,k + Ykwk
g))

• Divide in epochs, every epoch is divided in periodsT B = O((log T)2tmix /σ 2N = O(tmix log T)

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

• at epoch k.πk(a |x) ∝ πk−1 exp(ϕ(x, a)T(wr,k + Ykwk
g))

• Divide in epochs, every epoch is divided in periodsT B = O((log T)2tmix /σ 2N = O(tmix log T)

• In each epoch, collect rewards (or, utilities) for the last N time-steps (will allow to reach the steady-state
distribution in first N time-steps); also allow achieve unbiasedness (almost) in estimating q function.

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

• at epoch k.πk(a |x) ∝ πk−1 exp(ϕ(x, a)T(wr,k + Ykwk
g))

• Divide in epochs, every epoch is divided in periodsT B = O((log T)2tmix /σ 2N = O(tmix log T)

• In each epoch, collect rewards (or, utilities) for the last N time-steps (will allow to reach the steady-state
distribution in first N time-steps); also allow achieve unbiasedness (almost) in estimating q function.

• Fit to the collected reward (or, utility) by solving linear regression.wj,k

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

• at epoch k.πk(a |x) ∝ πk−1 exp(ϕ(x, a)T(wr,k + Ykwk
g))

• Divide in epochs, every epoch is divided in periodsT B = O((log T)2tmix /σ 2N = O(tmix log T)

• In each epoch, collect rewards (or, utilities) for the last N time-steps (will allow to reach the steady-state
distribution in first N time-steps); also allow achieve unbiasedness (almost) in estimating q function.

• Fit to the collected reward (or, utility) by solving linear regression.wj,k

• Update dual-variable , : average of utilities collected over total Yk = Yk−1 + η(b − ̂Jk) ̂Jk B − N

5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Algorithm 3
• Computationally efficient algorithm yet regret and violation (first such result for linear CMDP).�̃�(T)

• Additional assumptions:

• Primal-dual adaptation of MDP-EXP2 [Wei et al.’21]

• at epoch k.πk(a |x) ∝ πk−1 exp(ϕ(x, a)T(wr,k + Ykwk
g))

• Divide in epochs, every epoch is divided in periodsT B = O((log T)2tmix /σ 2N = O(tmix log T)

• In each epoch, collect rewards (or, utilities) for the last N time-steps (will allow to reach the steady-state
distribution in first N time-steps); also allow achieve unbiasedness (almost) in estimating q function.

• Fit to the collected reward (or, utility) by solving linear regression.wj,k

• Update dual-variable , : average of utilities collected over total Yk = Yk−1 + η(b − ̂Jk) ̂Jk B − N

• Can achieve zero violation tighten the optimization: b + ϵ
5

Finite mixing time— ; any state occupancy measure.
Every policy is exploratory in the feature space (can be relaxed to only one known exploratory policy)—

| |ℙπν1 − ℙπν2 | |TV ≤ e−1/tmix | |ν1 − ν2 | |TV ν1, ν2

λmin (∫𝒳
∑

a

π(a |x)ϕ(x, a)ϕ(x, a)Tdνπ(x)dx) ≥ σ

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

6

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

6

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

• Regret and violation indeed go to 0.

6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

• Regret and violation indeed go to 0.

• Higher , violation goes to 0 quicker.ϵ
6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

0 1 2 3 4 5
T 105

0
0.1
0.2
0.3

Av
g.

 V
io

la
tio

n

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

• Regret and violation indeed go to 0.

• Higher , violation goes to 0 quicker.ϵ
6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

0 1 2 3 4 5
T 105

0
0.1
0.2
0.3

Av
g.

 V
io

la
tio

n

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

• Regret and violation indeed go to 0.

• Higher , violation goes to 0 quicker.ϵ
6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

0 1 2 3 4 5
T 105

0
0.1
0.2
0.3

Av
g.

 V
io

la
tio

n

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

• Regret and violation indeed go to 0.

• Higher , violation goes to 0 quicker.ϵ
6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

Avg. violation for
higher ϵ

0 1 2 3 4 5
T 105

0
0.1
0.2
0.3

Av
g.

 V
io

la
tio

n

Simulation
• Transmit a packet or not a = 1 a = 0

• If transmitted incur cost; seeks to  
minimize cost

• Also reduces the no. of packets with prob.

• Multiple packets arrive with certain prob.

• Constraint: seeks to maintain the no. of 
packets below a threshold.

• Regret and violation indeed go to 0.

• Higher , violation goes to 0 quicker.ϵ
6

0 1 2 3 4 5
T 105

0.05

0.22

Av
er

ag
e

R
eg

re
t

0 1 2 3 4 5
T 105

0

2000

4000

6000

Vi
ol
at
io
n

Avg. violation for
higher ϵ

Future Research Direction
• Non-linear Function Approximation.

7

Future Research Direction
• Non-linear Function Approximation.

• Algorithms 1 and 2 depend on span of the optimal value function: can we
estimate or eliminate that?

7

Future Research Direction
• Non-linear Function Approximation.

• Algorithms 1 and 2 depend on span of the optimal value function: can we
estimate or eliminate that?

• Will it be possible to achieve regret and violation bound under only
basic Assumption using computationally efficient algorithm (even open for
unconstrained case)?

�̃�(T)

7

References

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with linear function
approximation. In Conference on Learning Theory, pages 2137– 2143. PMLR, 2020.

Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, and Rahul Jain. Learning infinite-horizon average-reward mdps with linear
function approximation. In International Conference on Artificial Intelligence and Statistics, pages 3007–3015. PMLR, 2021.

Liyu Chen, Rahul Jain, and Haipeng Luo. Learning infinite-horizon average-reward markov decision processes with constraints.
arXiv preprint arXiv:2202.00150, 2022.

Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with linear function approximation.
 arXiv preprint arXiv:2206.11889, 2022.

Honghao Wei, Xin Liu, and Lei Ying. A provably-efficient model-free algorithm for infinite-horizon average-reward constrained
markov decision processes. In AAAI Conference on ArtificialIntelligence, 2022.

8

