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0. Two objects : Approximation error

Approximation Error of neural network : how well neural networks approximates the functions in certain class.
| f — fp o= inffe?SUprewgo(Xﬂf(x) — fp(X)]

The error is characterized by...

1. The complexity of neural network class F
« Three components : depth (L), width (W), number of units (U) (Bartlett & Anthony, 1999).
« In my work, F is set as fully-connected neural network with sparse weight.

2. The specific function space where the ground-truth belongs. (ex: Holder, Besov, Sobolev, RKHS, etc.)

1. X = C? (d-dimensional cube)
Wgo (X) ‘I\/Ihaskar (1996), Yarotsky (2017), Peterson & Voigtlaender (2018), Schmidt-Hieber (2020) |

|
Holder space
P 2 X=5%1={xeR%| x ll,= 1} FNN

Fang et al (2020), Feng et al (2021) : CNN

Above literature studies fixed e-approximation accuracy, and express L, W, and U w.r.t. € € (0,1) for fixed d.

‘ My work : under the setting f, € WE(5471), letting d — oo, the approximation error is expressed in d.
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0. Two objects : excess risk

Excess Risk of estimator : how well neural networks estimates the underlying functions with noisy observations
{xi, v}, where they are generated from...

yi = fp(x) + e, e~N(0, o)

It is assumed f, € WL (S%71), and it is estimated through neural network, which is a minimizer of...

n
Val 1 . . 17}
fo= an {EZ(f(xi) — yi)z} "Reqgularized estimator
=1

Further clip the estimator via the projection operator (Suzuki, 2018, Fang & Cheng, 2022, Oono & Suzuki, 2019) :

fO, it [f(x)|<B
ngf(x) =4 B, if f(x)>B
—B, if f(x) <-B

We are interested in bounding excess risk defined as :

g(ﬂBfn) - g(fp) = E(X,y)~p [(y_ann(X))z] — E(X,y)~p [(y_fp(X))Z] = EX~pX[(7TBfn(X)_fp(X))2]

*My work : under the setting f, € WL (S%7!), letting d — o, the bound on excess risk is expressed in n and d.




1. Deep RelLU networks

A deep RelLU network with a “depth " L and a "width vector” p = (py,P1, -, Pr+1) € RET? is defined as :

f : Sd_l - R, X — f(X) = WLO-VLWL—lo-VL_l ...O'V1W1x ‘

where W; € RFi+1*Pi is weight matrix and v; € R”i is a shift vector on RelU activation g, (x) = max(x — v;, 0).

The neural network class F we consider is written as :
F(L,p,N) = {f of the form R :TE_, | W llo +1l vj llp < NV}

where || W; Iy and Il v; Il denotes the number of non-zero entries in W; and v;.




Forx € S471, f, €

For x € S471, f, e W (S971)

Sobolev Space on Sphere

Proji(fp) € H
C £,(S971), it can be written as :

Dimension of H

| _—W

Orthonormal basis of #Z
of degree [ < k.

0 0o (k,d)
0= Y EGE =Y ) —
k=0 k=0 1=1

is defined as :

r/2
S lloo< 00

I fp "WEO(Sd_l):" (l_ASd_l + ])

Laplace-Beltrami (5perator : (Hessian
Operator on Euclidean Space).

\

Fourier Coefficient of f*
given by < f,,, V1 (x) >, (sd-1)-




2. Approximation result

Our Result : Let £, € W, (S471). For 0 < a,B,y < 1, and some constants C,C’ > 0 independent with d:

1. When r = 0(d) as d — oo, then there exists a neural network f € F(L,p, V) with depth L = 0(d"log,d),
W = 0(d%), N = 0(d™{@+r.1}) with approximation rate :

I = £ Neo< C 1l £ My (so-1y A=

2. When r = 0(1) as d — oo, then there exists a neural network f € F(L,p, V') with depth L = 0(d"log,d),
W =0(9d)?), M = 0((9d)%), with approximation rate :

I = fp Noo< €' 1l fp iy, (sa-1) ™

Implication 1 : When the given function smoothness increases from r = 0(1) to r = 0(d), the required width
for the approximation becomes narrower, while the smoothness has little effect on the depth of network.

Implication 2 : When r = 0(d), the deep ReLU FNN avoids the " Curse of dimensionality”, requiring at most
N = 0(d?), with a very sharp approximation error rate.

Implication 3 : The same observation is not found in approximation theory result in f, € W& ([0,1]¢).



Comparisons with existing literature

Our Result : Let £, € W, (S%471). For 0 < a, 8,y < 1, and some constants C,C’ > 0 independent with d:

1. When r = 0(d) as d — oo, then there exists a neural network f € F(L,p, V) with depth L = 0(dlog,d),
W = 0(d%), N = 0(d™a{e+r.1}) with approximation rate :

I F = Fo oo C Il £ Ny (ga-y d=%

2. When r = 0(1) as d — oo, then there exists a neural network f € F(L,p, V') with depth L = 0(d"log,d),
W =0(09d)?), ¥ = 0((9d)%), with approximation rate :

1 F = fo o< €Il fy llyyr (sa-n) 4=

Theorem (Schimdt-Hieber, 2020) : ) :
= P TR _xl. As either r or d increases, the width W and
or any function £ € Wi, ([0, 1]%) and let K = 0 be the radius of Holder 77\ | \her of active parameters V' increases.

ball. Then, for any integers m > 1 and N? > (r 4+ 1)? v (K + 1)e9;th
exists a network . .
Z 2. The approximation error : can't observe the

F e FP(L.(d.6(d + [r)N",....6(d + [r]))N", 1) interactions between r and d, specifically in
the first term.

with depth L = 8 + (m + 5)(1 + [log,(d V r)|) and the number of

parameters NH < 141(1 + d + r)3*9NH(m + 6);such that

|F= 7| < @K+ 1)+ a2+ P)6d (W)~ + K3 () 5. ,




3. Bounds on Excess risk

For some constants € > 0, we have a bound for the excess risk: &(mpfr,) — E(f,) !

Theorem 3. Theorem 4.
Function class Wr (84-1) wr ([0,1]%)
Smoothness r O(d) O(1) Vr >0
Upper-bound on N | O(nd) O(nd) O((d+r)?)
= - 4r o d 4r ~ 2r
Estimation error rate | O(d® -n~%+32) | O((£)2d?-n~w+32) | O((d+r)?-n~z+1)

1. Bounds on excess risks are written in terms of n and d :
»  Note the bounds for the estimation error of f, € WL (S%71) is sub-optimal, whereas the

error bound for f, € W5 ([0,1]%) is optimal. (Donoho & Johnstone, 1998)

» Note that in case of f, € W, (5%71), the order of d in the constant factors are
dependent on r, whereas f, € W5 ([0,1]%) has no such dependency.

2. Interestingly, in case of f, € WL (S%71), only 0(d?) for N are required for all r > 0, whereas,
in case of f, € WE([0,1]%), the upper-bound for IV is exponentially dependent on d for all r > 0.
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