

Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search

Meet the authors

Michał Zawalski, Michał Tyrolski, Konrad Czechowski, Tomasz Odrzygóźdź, Damian Stachura, Piotr Piękos, Yuhuai Wu, Łukasz Kuciński, Piotr Miłoś

Environments

INT (proving inequalities)

Sokoban

Rubik's Cube

Graph search

Graph search

Adaptive Subgoal Search

Adaptive Subgoal Search

Adaptive Subgoal Search

Adaptive Subgoal Search

Adaptive Subgoal Search

Adaptive Subgoal Search

Adaptive Subgoal Search

Developing adaptive search methods

- We achieve adaptivity by using a set of subgoal generators.
- In every step, the generator is chosen by the planner

Developing adaptive search methods

We experimented with several adaptive approaches. Two conclusions follow:

- It is beneficial to strongly prioritize the longest subgoals
- Adaptive methods outperform non-adaptive Subgoal Search

Experimental results

Out-of-distribution generalization

- decomposes problem into easier parts

- decomposes problem into easier parts
- adapts to the local complexity

- decomposes problem into easier parts
- adapts to the local complexity
- mitigates errors of one component with others

- decomposes problem into easier parts
- adapts to the local complexity
- mitigates errors of one component with others
- uses only supervised training objectives

- planning in a latent space

- planning in a latent space
- model dynamics

- planning in a latent space
- model dynamics
- stochastic environments

- planning in a latent space
- model dynamics
- stochastic environments
- solution optimality

- planning in a latent space
- model dynamics
- stochastic environments
- solution optimality
- real-world applications

The final summary of Adaptive Subgoal Search

		F	
	L		

1	7	
100		

Solves complex problems

by decomposing them into subgoals and planning with high-level steps

Adapts to the local complexity

by choosing the appropriate distance for generating subgoals.

Generalizes to out-of-distribution instances

without any additional fine-tuning.

Visit our webpage!

